skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Probing plasma physics with spectral index maps of accreting black holes on event horizon scales

The Event Horizon Telescope (EHT) collaboration has produced the first resolved images of the supermassive black holes at the centre of our galaxy and at the centre of the elliptical galaxy M87. As both technology and analysis pipelines improve, it will soon become possible to produce spectral index maps of black hole accretion flows on event horizon scales. In this work, we predict spectral index maps of both M87* and Sgr A* by applying the general relativistic radiative transfer (GRRT) code ipole to a suite of general relativistic magnetohydrodynamic (GRMHD) simulations. We analytically show that the spectral index increases with increasing magnetic field strength, electron temperature, and optical depth. Consequently, spectral index maps grow more negative with increasing radius in almost all models, since all of these quantities tend to be maximized near the event horizon. Additionally, photon ring geodesics exhibit more positive spectral indices, since they sample the innermost regions of the accretion flow with the most extreme plasma conditions. Spectral index maps are sensitive to highly uncertain plasma heating prescriptions (the electron temperature and distribution function). However, if our understanding of these aspects of plasma physics can be tightened, even the spatially unresolved spectral index around 230 GHz can be used to discriminate between models. In particular, Standard and Normal Evolution (SANE) flows tend to exhibit more negative spectral indices than Magnetically Arrested Disc (MAD) flows due to differences in the characteristic magnetic field strength and temperature of emitting plasma.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 4203-4220
["p. 4203-4220"]
Sponsoring Org:
National Science Foundation
More Like this

    We study the observational signatures of magnetically arrested black hole accretion with non-rotating inflow on to a rotating black hole; we consider a range of angles between the black hole spin and the initial magnetic field orientation. We compare the results of our general relativistic magneto-hydrodynamic simulations to more commonly used rotating initial conditions and to the Event Horizon Telescope (EHT) observations of M87. We find that the mm intensity images, polarization images, and synchrotron emission spectra are very similar among the different simulations when post-processed with the same electron temperature model; observational differences due to different electron temperature models are significantly larger than those due to the different realizations of magnetically arrested accretion. The orientation of the mm synchrotron polarization is particularly insensitive to the initial magnetic field orientation, the electron temperature model, and the rotation of the inflowing plasma. The largest difference among the simulations with different initial rotation and magnetic tilt is in the strength and stability of the jet; spherical inflow leads to kink-unstable jets. We discuss the implications of our results for current and future EHT observations and for theoretical models of event-horizon-scale black hole accretion.

    more » « less

    Wind-fed models offer a unique way to form predictive models of the accretion flow surrounding Sagittarius A*. We present 3D wind-fed magnetohydrodynamic (MHD) and general relativistic magnetohydrodynamic (GRMHD) simulations spanning the entire dynamic range of accretion from parsec scales to the event horizon. We expand on previous work by including non-zero black hole spin and dynamically evolved electron thermodynamics. Initial conditions for these simulations are generated from simulations of the observed Wolf–Rayet stellar winds in the Galactic Centre. The resulting flow tends to be highly magnetized (β ≈ 2) with an ∼r−1 density profile independent of the strength of magnetic fields in the winds. Our simulations reach the magnetically arrested disc (MAD) state for some, but not all cases. In tilted flows, standard and normal evolution (SANE) jets tend to align with the angular momentum of the gas at large scales, even if that direction is perpendicular to the black hole spin axis. Conversely, MAD jets tend to align with the black hole spin axis. The gas angular momentum shows similar behaviour: SANE flows tend to only partially align while MAD flows tend to fully align. With a limited number of dynamical free parameters, our models can produce accretion rates, 230 GHz flux, and unresolved linear polarization fractions roughly consistent with observations for several choices of electron heating fraction. Absent another source of large-scale magnetic field, winds with a higher degree of magnetization (e.g. where the magnetic pressure is 1/100 of the ram pressure in the winds) may be required to get a sufficiently large rotation measure with consistent sign.

    more » « less
  3. Abstract

    The centers of our Galaxy and the nearby Messier 87 are known to contain supermassive black holes, which support accretion flows that radiate across the electromagnetic spectrum. Although the composition of the accreting gas is unknown, it is likely a mix of ionized hydrogen and helium. We use a simple analytic model and a suite of numerical general relativistic magnetohydrodynamic accretion simulations to study how polarimetric images and spectral energy distributions of the source are influenced by the hydrogen/helium content of the accreting matter. We aim to identify general trends rather than make quantitatively precise predictions, since it is not possible to fully explore the parameter space of accretion models. If the ion-to-electron temperature ratio is fixed, then increasing the helium fraction increases the gas temperature; to match the observational flux density constraints, the number density of electrons and magnetic field strengths must therefore decrease. In our numerical simulations, emission shifts from regions of low to high plasmaβ—both altering the morphology of the image and decreasing the variability of the light curve—especially in strongly magnetized models with emission close to the midplane. In polarized images, we find that the model gas composition influences the degree to which linear polarization is (de)scrambled and therefore affects estimates for the resolved linear polarization fraction. We also find that the spectra of helium-composition flows peak at higher frequencies and exhibit higher luminosities. We conclude that gas composition may play an important role in predictive models for black hole accretion.

    more » « less
  4. In the past few years, the Event Horizon Telescope (EHT) has provided the first-ever event horizon-scale images of the supermassive black holes (BHs) M87* and Sagittarius A* (Sgr A*). The next-generation EHT project is an extension of the EHT array that promises larger angular resolution and higher sensitivity to the dim, extended flux around the central ring-like structure, possibly connecting the accretion flow and the jet. The ngEHT Analysis Challenges aim to understand the science extractability from synthetic images and movies to inform the ngEHT array design and analysis algorithm development. In this work, we compare the accretion flow structure and dynamics in numerical fluid simulations that specifically target M87* and Sgr A*, and were used to construct the source models in the challenge set. We consider (1) a steady-state axisymmetric radiatively inefficient accretion flow model with a time-dependent shearing hotspot, (2) two time-dependent single fluid general relativistic magnetohydrodynamic (GRMHD) simulations from the H-AMR code, (3) a two-temperature GRMHD simulation from the BHAC code, and (4) a two-temperature radiative GRMHD simulation from the KORAL code. We find that the different models exhibit remarkably similar temporal and spatial properties, except for the electron temperature, since radiative losses substantially cool down electrons near the BH and the jet sheath, signaling the importance of radiative cooling even for slowly accreting BHs such as M87*. We restrict ourselves to standard torus accretion flows, and leave larger explorations of alternate accretion models to future work. 
    more » « less
  5. We explore the plasma matter content in the innermost accretion disk/jet in M87* as relevant for an enthusiastic search for the signatures of anti-matter in the next generation of the Event Horizon Telescope (ngEHT). We model the impact of non-zero positron-to-electron ratio using different emission models, including a constant electron to magnetic pressure (constant βe model) with a population of non-thermal electrons as well as an R-beta model populated with thermal electrons. In the former case, we pick a semi-analytic fit to the force-free region of a general relativistic magnetohydrodynamic (GRMHD) simulation, while in the latter case, we analyze the GRMHD simulations directly. In both cases, positrons are being added at the post-processing level. We generate polarized images and spectra for some of these models and find out that at the radio frequencies, both of the linear and the circular polarizations are enhanced with every pair added. On the contrary, we show that, at higher frequencies, a substantial positron fraction washes out the circular polarization. We report strong degeneracies between different emission models and the positron fraction, though our non-thermal models show more sensitivities to the pair fraction than the thermal models. We conclude that a large theoretical image library is indeed required to fully understand the trends probed in this study, and to place them in the context of a large set of parameters which also affect polarimetric images, such as magnetic field strength, black hole spin, and detailed aspects of the electron temperature and the distribution function. 
    more » « less