skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A molecular dynamics study of laser-excited gold
The structural evolution of laser-excited systems of gold has previously been measured through ultrafast MeV electron diffraction. However, there has been a long-standing inability of atomistic simulations to provide a consistent picture of the melting process, leading to large discrepancies between the predicted threshold energy density for complete melting, as well as the transition between heterogeneous and homogeneous melting. We make use of two-temperature classical molecular dynamics simulations utilizing three highly successful interatomic potentials and reproduce electron diffraction data presented by Mo et al. [Science 360, 1451–1455 (2018)]. We recreate the experimental electron diffraction data, employing both a constant and temperature-dependent electron–ion equilibration rate. In all cases, we are able to match time-resolved electron diffraction data, and find consistency between atomistic simulations and experiments, only by allowing laser energy to be transported away from the interaction region. This additional energy-loss pathway, which scales strongly with laser fluence, we attribute to hot electrons leaving the target on a timescale commensurate with melting.  more » « less
Award ID(s):
2045718
PAR ID:
10391154
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Matter and Radiation at Extremes
Volume:
7
Issue:
3
ISSN:
2468-2047
Page Range / eLocation ID:
036901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report a pulsed laser annealing method to convert carbon fibers and nanotubes into diamond fibers at ambient temperature and pressure in air. The conversion of carbon nanofibers and nanotubes into diamond nanofibers involves melting in a super undercooled state using nanosecond laser pulses, and quenching rapidly to convert into phase-pure diamond. The conversion process occurs at ambient temperature and pressure, and can be carried out in air. The structure of diamond fibers has been confirmed by selected-area electron diffraction in transmission electron microscopy, electron-back-scatter-diffraction in high-resolution scanning electron microscopy, all showing characteristic diffraction lines for the diamond structure. The bonding characteristics were determined by Raman spectroscopy with a strong peak near 1332 cm −1 , and high-resolution electron-energy-loss spectroscopy in transmission electron microscopy with a characteristic peak at 292 eV for σ* for sp 3 bonding and the absence of π* for sp 2 bonding. The Raman peak at 1332 cm −1 downshifts to 1321 cm −1 for diamond nanofibers due to the phonon confinement in nanodiamonds. These laser-treated carbon fibers with diamond seeds are used to grow larger diamond crystallites further by using standard hot-filament chemical vapor deposition (HFCVD). We compare these results with those obtained without laser treating the carbon fibers. The details of diamond conversion and HFCVD growth are presented in this paper. 
    more » « less
  2. Abstract Dynamic solidification behavior during metal additive manufacturing directly influences the as-built microstructure, defects, and mechanical properties of printed parts. How the formation of these features is driven by temperature variation (e.g., thermal gradient magnitude and solidification front velocity) has been studied extensively in metal additive manufacturing, with synchrotron x-ray imaging becoming a critical tool to monitor these processes. Here, we extend these efforts to monitoring full thermomechanical deformation during solidification through the use of operando x-ray diffraction during laser melting. With operando diffraction, we analyze thermomechanical deformation modes such as torsion, bending, fragmentation, assimilation, oscillation, and interdendritic growth. Understanding such phenomena can aid the optimization of printing strategies to obtain specific microstructural features, including localized misorientations, dislocation substructure, and grain boundary character. The interpretation of operando diffraction results is supported by post-mortem electron backscatter diffraction analyses. 
    more » « less
  3. Grain boundaries in polycrystalline materials migrate to reduce the total excess energy. It has recently been found that the factors governing migration rates of boundaries in bicrystals are insufficient to explain boundary migration in polycrystals. We first review our current understanding of the atomistic mechanisms of grain boundary migration based on simulations and high-resolution transmission electron microscopy observations. We then review our current understanding at the continuum scale based on simulations and observations using high-energy diffraction microscopy. We conclude that detailed comparisons of experimental observations with atomistic simulations of migration in polycrystals (rather than bicrystals) are required to better understand the mechanisms of grain boundary migration, that the driving force for grain boundary migration in polycrystals must include factors other than curvature, and that current simulations of grain growth are insufficient for reproducing experimental observations, possibly because of an inadequate representation of the driving force. 
    more » « less
  4. Silicon surface amorphization by short pulse laser irradiation is a phenomenon of high importance for device manufacturing and surface functionalization. To provide insights into the processes responsible for laser-induced amorphization, a multiscale computational study combining atomistic molecular dynamics simulations of nonequilibrium phase transformations with continuum-level modeling of laser-induced melting and resolidification is performed. Atomistic modeling provides the temperature dependence of the melting/solidification front velocity, predicts the conditions for the transformation of the undercooled liquid to the amorphous state, and enables the parametrization of the continuum model. Continuum modeling, performed for laser pulse durations from 30 ps to 1.5 ns, beam diameters from 5 to 70 μm, and wavelengths of 532, 355, and 1064 nm, reveals the existence of two threshold fluences for the generation and disappearance of an amorphous surface region, with the kinetically stable amorphous phase generated at fluences between the lower and upper thresholds. The existence of the two threshold fluences defines the spatial distribution of the amorphous phase within the laser spot irradiated by a pulse with a Gaussian spatial profile. Depending on the irradiation conditions, the formation of a central amorphous spot, an amorphous ring pattern, and the complete recovery of the crystalline structure are predicted in the simulations. The decrease in the pulse duration or spot diameter leads to an accelerated cooling at the crystal–liquid interface and contributes to the broadening of the range of fluences that produce the amorphous region at the center of the laser spot. The dependence of the amorphization conditions on laser fluence, pulse duration, wavelength, and spot diameter, revealed in the simulations, provides guidance for the development of new applications based on controlled, spatially resolved amorphization of the silicon surface. 
    more » « less
  5. Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi 2 Te 3 , and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi 2 Te 3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices. 
    more » « less