skip to main content


Title: Direct Laser Acceleration of Electrons using a Shaped Tilted Ponderomotive Mirror
While there has been success in Wakefield acceleration of electrons, there are a number of applications that could benefit from acceleration to modest energy (~MeV) by the laser field, for example, ultrafast electron diffraction and injection into higher-energy laser-driven accelerators. Here we outline our scheme for ponderomotive acceleration of electrons (and in principle, positrons) in which we control the group velocity of ultrafast pulses through pulse front tilt. Provided the intensity is above the threshold for capture of electrons, the leading part of the pulse front effectively acts like a moving mirror whose shape is controlled by the spatio-temporal topology of the intensity profile. Our analytic models of the propagation of spatially-chirped beams, simple relativistic single-particle models of the laser-electron interaction and our implementation of these beams in particle-in-cell simulations help to predict the output electron energy and direction. We are preparing experiments on the ALEPH laser system at Colorado State University in which we will use the diagnostic techniques that we have developed to align our scaled-up design of a high-energy pulse compressor that will deliver spatially chirped pulses.  more » « less
Award ID(s):
1903709
NSF-PAR ID:
10416593
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Bulletin of the American Physical Society
ISSN:
0003-0503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report recent single-shot spatiotemporal measurements of laser pulses, including pulse-front tilt (PFT) and spatial chirp, taken at the Compact Multipulse Terawatt laser at the Jupiter Laser Facility in Livermore, CA. STRIPED FISH, a device that measures the complete 3D electric field of fs to ps laser pulses on a single shot, was adapted to near infrared for these measurements. We present the design of the instrument used for these experiments, the on-shot measurements of systematic high-order PFT, and shot-to-shot variations in the measurements of spatiotemporal couplings. Finally, we simulate the effect of PFT in target normal sheath acceleration experiments. These simulations showed that pulse front tilt can steer hot electrons, shape the distribution of the accelerating sheath field, and increase the variability of cutoff energy in the resulting proton spectra. While these effects may be detrimental to experimental accuracy if the pulse front tilt is left unmeasured, hot electron steering shows promise for precision manipulation of the particle source for a range of applications, including irradiation of secondary targets for opacity measurements, radiography, or neutron generation.

     
    more » « less
  2. Abstract Using plasma mirror injection we demonstrate, both analytically and numerically, that a circularly polarized helical laser pulse can accelerate highly collimated dense bunches of electrons to several hundred MeV using currently available laser systems. The circular-polarized helical (Laguerre–Gaussian) beam has a unique field structure where the transverse fields have helix-like wave-fronts which tend to zero on-axis where, at focus, there are large on-axis longitudinal magnetic and electric fields. The acceleration of electrons by this type of laser pulse is analyzed as a function of radial mode number and it is shown that the radial mode number has a profound effect on electron acceleration close to the laser axis. Using three-dimensional particle-in-cell simulations a circular-polarized helical laser beam with power of 0.6 PW is shown to produce several dense attosecond bunches. The bunch nearest the peak of the laser envelope has an energy of 0.47 GeV with spread as narrow as 10%, a charge of 26 pC with duration of ∼ 400 as, and a very low divergence of 20 mrad. The confinement by longitudinal magnetic fields in the near-axis region allows the longitudinal electric fields to accelerate the electrons over a long period after the initial reflection. Both the longitudinal E and B fields are shown to be essential for electron acceleration in this scheme. This opens up new paths toward attosecond electron beams, or attosecond radiation, at many laser facilities around the world. 
    more » « less
  3. Abstract

    Ultrafast high-brightness X-ray pulses have proven invaluable for a broad range of research. Such pulses are typically generated via synchrotron emission from relativistic electron bunches using large-scale facilities. Recently, significantly more compact X-ray sources based on laser-wakefield accelerated (LWFA) electron beams have been demonstrated. In particular, laser-driven sources, where the radiation is generated by transverse oscillations of electrons within the plasma accelerator structure (so-called betatron oscillations) can generate highly-brilliant ultrashort X-ray pulses using a comparably simple setup. Here, we experimentally demonstrate a method to markedly enhance the parameters of LWFA-driven betatron X-ray emission in a proof-of-principle experiment. We show a significant increase in the number of generated photons by specifically manipulating the amplitude of the betatron oscillations by using our novel Transverse Oscillating Bubble Enhanced Betatron Radiation scheme. We realize this through an orchestrated evolution of the temporal laser pulse shape and the accelerating plasma structure. This leads to controlled off-axis injection of electrons that perform large-amplitude collective transverse betatron oscillations, resulting in increased radiation emission. Our concept holds the promise for a method to optimize the X-ray parameters for specific applications, such as time-resolved investigations with spatial and temporal atomic resolution or advanced high-resolution imaging modalities, and the generation of X-ray beams with even higher peak and average brightness.

     
    more » « less
  4. Abstract

    We describe an interplay between two injection mechanism of background electrons into an evolving plasma bubble behind an intense laser pulse: one due to the overall bubble expansion, and another due to its periodic undulation. The two mechanisms occur simultaneously when an intense laser pulse propagating inside a plasma forms a shock-like steepened front. Periodic undulations of the plasma bubble along the laser propagation path can either inhibit or conspire with electron injection due to bubble expansion. We show that carrier-envelope-phase (CEP) controlled plasma bubble undulation induced by the self-steepening laser pulse produces a unique electron injector—expanding phase-controlled undulating bubble (EPUB). The longitudinal structure of the electron bunch injected by the EPUB can be controlled by laser polarization and power, resulting in high-charge (multiple nano-Coulombs) high-current (tens of kilo-amperes) electron beams with ultra-short (femtosecond-scale) temporal structure. Generation of high-energy betatron radiation with polarization- and CEP-controlled energy spectrum and angular distribution is analyzed as a promising application of EPUB-produced beams.

     
    more » « less
  5. Attosecond pulses formed by high order harmonics (HHs) of an infrared (IR) laser field is a powerful tool for studying and controlling ultrafast dynamics of electrons in atoms, molecules and solids at its intrinsic time-scale. However, in the X-ray range the energy of attosecond pulses is rather limited. Their amplification is an important but very challenging problem since none of the existing amplifiers can support the corresponding PHz bandwidth. In our previous work [1] we proposed a method for the attosecond pulse amplification in hydrogen-like active medium of a recombination plasma-based X-ray laser dressed by a replica of the fundamental frequency IR field used for the HH generation. Due to the IRfield-induced sub-laser-cycle Stark shift and splitting of the lasing energy levels the gain of the active medium is redistributed over the combination frequencies, separated from the resonance by even multiples of the frequency of the IR field. If the incident HHs forming an attosecond pulse train are tuned in resonance with the induced gain lines and the active plasma medium is strongly dispersive for the modulating IR field, then during the amplification the relative phases of harmonics and (under the optimal choice of the IR field strength) the shape of the amplified pulses will be preserved. In the present work we show the possibility of boosting the efficiency of HH amplification by modulating the active medium of an X-ray laser with the second harmonic of the fundamental frequency IR field. We show that under the action of a laser field (with arbitrary frequency) the gain redistribution occurs not only over the even combination frequencies discussed in [1], but also over the odd frequencies separated from the resonance by odd multiples of the laser frequency. Besides, nearly half of the medium gain is contained in the even induced gain lines, and nearly half in the odd. If the modulating field is the second harmonic of the IR field, used for the generation the HHs and attosecond pulses, then the seeding HHs can be tuned in resonance with both even and odd gain lines simultaneously, which will make the overall gain much higher as compared to the previously considered case of the fundamental frequency modulating field (when only the even gain lines play the role). By the example of the C5+ X-ray laser with 3.38 nm wavelength of the inverted transition we show the possibility of increasing the efficiency of 430 as pulse amplification by 8.5 times when the active medium is modulated with the second harmonic of the fundamental frequency IR field with wavelength 2.1 µm. 
    more » « less