Abstract The glass transition temperature (Tg) is a key property that dictates the applicability of conjugated polymers. TheTgdemarks the transition into a brittle glassy state, making its accurate prediction for conjugated polymers crucial for the design of soft, stretchable, or flexible electronics. Here we show that a single adjustable parameter can be used to build a relationship between theTgand the molecular structure of 32 semiflexible (mostly conjugated) polymers that differ drastically in aromatic backbone and alkyl side chain chemistry. An effective mobility value,ζ, is calculated using an assigned atomic mobility value within each repeat unit. The only adjustable parameter in the calculation ofζis the ratio of mobility between conjugated and non-conjugated atoms. We show thatζcorrelates strongly to theTg, and that this simple method predicts theTgwith a root-mean-square error of 13 °C for conjugated polymers with alkyl side chains.
more »
« less
Mechanochemically accessing a challenging-to-synthesize depolymerizable polymer
Abstract Polymers with low ceiling temperatures (Tc) are highly desirable as they can depolymerize under mild conditions, but they typically suffer from demanding synthetic conditions and poor stability. We envision that this challenge can be addressed by developing high-Tcpolymers that can be converted into low-Tcpolymers on demand. Here, we demonstrate the mechanochemical generation of a low-Tcpolymer, poly(2,5-dihydrofuran) (PDHF), from an unsaturated polyether that contains cyclobutane-fused THF in each repeat unit. Upon mechanically induced cycloreversion of cyclobutane, each repeat unit generates three repeat units of PDHF. The resulting PDHF completely depolymerizes into 2,5-dihydrofuran in the presence of a ruthenium catalyst. The mechanochemical generation of the otherwise difficult-to-synthesize PDHF highlights the power of polymer mechanochemistry in accessing elusive structures. The concept of mechanochemically regulating theTcof polymers can be applied to develop next-generation sustainable plastics.
more »
« less
- PAR ID:
- 10391285
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fundamental understanding of mechanochemical reactivity is important for designing new mechanophores. Besides the core structure of mechanophores, substituents on a mechanophore can affect its mechanochemical reactivity through electronic stabilization of the intermediate or effectiveness of force transduction from the polymer backbone to the mechanophore. The latter factor represents a unique mechanical effect in considering polymer mechanochemistry. Here, we show that regioisomeric linkage that is not directly adjacent to the first cleaving bond in cyclobutane can still significantly affect the mechanochemical reactivity of the mechanophore. We synthesized three non‐scissile 1,2‐diphenyl cyclobutanes, varying their linkage to the polymer backbone via theo,m, orp‐position of the diphenyl substituents. Even though the regioisomers share the same substituted cyclobutane core structure and similar electronic stabilization of the diradical intermediate from cleaving the first C−C bond, thepisomer exhibited significantly higher mechanochemical reactivity than theoandmisomers. The observed difference in reactivity can be rationalized as the much more effective force transduction to the scissile bond through thep‐position than the other two substitution positions. These findings point to the importance of considering force‐bearing linkages that are more distant from the bond to be cleaved when incorporating mechanophores into polymer backbones.more » « less
-
Abstract Chemical recycling to monomer (CRM) is a promising route for transitioning to a circular polymer economy. To develop new CRM systems with useful properties, it is important to understand the effects of monomer structure on polymerization/depolymerization behavior. In earlier work, this group demonstrated chemically recyclable polymers prepared by ring‐opening metathesis polymerization oftrans‐cyclobutane fused cyclooctenes (tCBCO). Here, it is investigated how different substituents on cyclobutane impact the thermodynamics and thermal properties oftCBCO polymers. Introducing additional substituents to acis‐diester functionalizedtCBCO is found to favor the conversion of polymerization; increased polymerization conversion is also observed when thecis‐diester is isomerized into itstranscounterpart. The effects of these structural features on the thermal properties are also studied. These findings can provide important insights into designing next‐generation CRM polymers.more » « less
-
Abstract Efficient doping of polymer semiconductors is required for high conductivity and efficient thermoelectric performance. Lewis acids, e.g., B(C6F5)3, have been widely employed as dopants, but the mechanism is not fully understood. 1:1 “Wheland type” or zwitterionic complexes of B(C6F5)3are created with small conjugated molecules 3,6‐bis(5‐(7‐(5‐methylthiophen‐2‐yl)‐2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐5‐yl)thiophen‐2‐yl)‐2,5‐dioctyl‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione [oligo_DPP(EDOT)2] and 3,6‐bis(5''‐methyl‐[2,2':5',2''‐terthiophen]‐5‐yl)‐2,5‐dioctyl‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione [oligo_DPP(Th)2]. Using a wide variety of experimental and computational approaches, the doping ability of these Wheland Complexes with B(C6F5)3are characterized for five novel diketopyrrolopyrrole‐ethylenedioxythiophene (DPP‐EDOT)‐based conjugated polymers. The electrical properties are a strong function of the specific conjugated molecule constituting the adduct, rather than acidic protons generated via hydrolysis of B(C6F5)3, serving as the oxidant. It is highly probable that certain repeat units/segments form adduct structures inp‐type conjugated polymers which act as intermediates for conjugated polymer doping. Electronic and optical properties are consistent with the increase in hole‐donating ability of polymers with their cumulative donor strengths. The doped film of polymer (DPP(EDOT)2‐(EDOT)2) exhibits exceptionally good thermal and air‐storage stability. The highest conductivities, ≈300 and ≈200 S cm−1, are achieved for DPP(EDOT)2‐(EDOT)2doped with B(C6F5)3and its Wheland complexes.more » « less
-
Abstract Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists inpara‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record lowTg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tgconjugated polymers for stretchable electronics.more » « less
An official website of the United States government
