skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fine-scaled climate variation in equatorial Africa revealed by modern and fossil primate teeth
Variability in resource availability is hypothesized to be a significant driver of primate adaptation and evolution, but most paleoclimate proxies cannot recover environmental seasonality on the scale of an individual lifespan. Oxygen isotope compositions (δ 18 O values) sampled at high spatial resolution in the dentitions of modern African primates ( n = 2,352 near weekly measurements from 26 teeth) track concurrent seasonal precipitation, regional climatic patterns, discrete meteorological events, and niche partitioning. We leverage these data to contextualize the first δ 18 O values of two 17 Ma Afropithecus turkanensis individuals from Kalodirr, Kenya, from which we infer variably bimodal wet seasons, supported by rainfall reconstructions in a global Earth system model. Afropithecus ’ δ 18 O fluctuations are intermediate in magnitude between those measured at high resolution in baboons ( Papio spp.) living across a gradient of aridity and modern forest-dwelling chimpanzees ( Pan troglodytes verus ). This large-bodied Miocene ape consumed seasonally variable food and water sources enriched in 18 O compared to contemporaneous terrestrial fauna ( n = 66 fossil specimens). Reliance on fallback foods during documented dry seasons potentially contributed to novel dental features long considered adaptations to hard-object feeding. Developmentally informed microsampling recovers greater ecological complexity than conventional isotope sampling; the two Miocene apes ( n = 248 near weekly measurements) evince as great a range of seasonal δ 18 O variation as more time-averaged bulk measurements from 101 eastern African Plio-Pleistocene hominins and 42 papionins spanning 4 million y. These results reveal unprecedented environmental histories in primate teeth and suggest a framework for evaluating climate change and primate paleoecology throughout the Cenozoic.  more » « less
Award ID(s):
2021591 2021666
PAR ID:
10391368
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
35
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Faunal analog reconstructions suggest that Last Interglacial (MIS 5e) sea surface temperatures were cooler around Bermuda and in the Caribbean than modern climate. Here we describe new and revised clumped isotope measurements ofCittarium picafossil shells supporting previous findings of cooler than modern temperatures in Bermuda during the Last Interglacial. We resolve temperature and δ18Owdifferences between two closely located and apparently coeval sites described in Winkelstern et al. (2017),https://doi.org/10.1002/2016pa003014through reprocessing raw isotopic data with the updated Brand/IUPAC parameters. New subannual‐resolution clumped isotope data reveal large variations in δ18Owout of phase with seasonal temperature changes (i.e., lower δ18Owvalues in winter). Supported by modern δ18Owmeasurements identifying similar processes occurring today, we suggest past variations in coastal δ18Owwere driven by seasonally variable freshwater discharge from a subterranean aquifer beneath the island. Taken together, our results emphasize the importance of δ18Owin controlling carbonate δ18O, and suggest that typical assumptions of constant δ18Owshould be made cautiously in nearshore settings and can contribute to less accurate reconstructions of paleotemperature. 
    more » « less
  2. Variability of oxygen isotopes in environmental water is recorded in tooth enamel, providing a record of seasonal change, dietary variability, and mobility. Physiology dampens this variability, however, as oxygen passes from environmental sources into blood and forming teeth. We showcase two methods of high resolution, 2-dimensional enamel sampling, and conduct modeling, to report why and how environmental oxygen isotope variability is reduced in animal bodies and teeth. First, using two modern experimental sheep, we introduce a sampling method, die-saw dicing, that provides high-resolution physical samples (n = 109 and 111 sample locations per tooth) for use in conventional stable isotope and molecular measurement protocols. Second, we use an ion microprobe to sample innermost enamel in an experimental sheep (n = 156 measurements), and in a Pleistocene orangutan (n = 176 measurements). Synchrotron and conventional μCT scans reveal innermost enamel thicknesses averaging 18 and 21 μm in width. Experimental data in sheep show that compared to drinking water, oxygen isotope variability in blood is reduced to 70–90 %; inner and innermost enamel retain between 36 and 48 % of likely drinking water stable isotope range, but this recovery declines to 28–34 % in outer enamel. 2D isotope sampling suggests that declines in isotopic variability, and shifted isotopic oscillations throughout enamel, result from the angle of secretory hydroxyapatite deposition and its overprinting by maturation. This overprinting occurs at all locations including innermost enamel, and is greatest in outer enamel. These findings confirm that all regions of enamel undergo maturation to varying degrees and confirm that inner and innermost enamel preserve more environmental variability than other regions. We further show how the resolution of isotope sampling — not only the spatial resolution within teeth, but also the temporal resolution of water in the environment — impacts our estimate of how much variation teeth recover from the environment. We suggest inverse methods, or multiplication by standard factors determined by ecology, taxon, and sampling strategy, to reconstruct the full scale of seasonal environmental variability. We advocate for combined inverse modeling and high-resolution sampling informed by the spatiotemporal pattern of enamel formation, and at the inner or innermost enamel when possible, to recover seasonal records from teeth. 
    more » « less
  3. IntroductionAstarte borealisholds great potential as an archive of seasonal paleoclimate, especially due to its long lifespan (several decades to more than a century) and ubiquitous distribution across high northern latitudes. Furthermore, recent work demonstrates that the isotope geochemistry of the aragonite shell is a faithful proxy of environmental conditions. However, the exceedingly slow growth rates ofA. borealisin some locations (<0.2mm/year) make it difficult to achieve seasonal resolution using standard micromilling techniques for conventional stable isotope analysis. Moreover, oxygen isotope (δ18O) records from species inhabiting brackish environments are notoriously difficult to use as paleoclimate archives because of the simultaneous variation in temperature and δ18Owatervalues. MethodsHere we use secondary ion mass spectrometry (SIMS) to microsample anA. borealisspecimen from the southern Baltic Sea, yielding 451 SIMS δ18Oshellvalues at sub-monthly resolution. ResultsSIMS δ18Oshellvalues exhibit a quasi-sinusoidal pattern with 24 local maxima and minima coinciding with 24 annual growth increments between March 1977 and the month before specimen collection in May 2001. DiscussionAge-modeled SIMS δ18Oshellvalues correlate significantly with bothin situtemperature measured from shipborne CTD casts (r2 = 0.52, p<0.001) and sea surface temperature from the ORAS5-SST global reanalysis product for the Baltic Sea region (r2 = 0.42, p<0.001). We observe the strongest correlation between SIMS δ18Oshellvalues and salinity when both datasets are run through a 36-month LOWESS function (r2 = 0.71, p < 0.001). Similarly, we find that LOWESS-smoothed SIMS δ18Oshellvalues exhibit a moderate correlation with the LOWESS-smoothed North Atlantic Oscillation (NAO) Index (r2 = 0.46, p<0.001). Change point analysis supports that SIMS δ18Oshellvalues capture a well-documented regime shift in the NAO circa 1989. We hypothesize that the correlation between the SIMS δ18Oshelltime series and the NAO is enhanced by the latter’s influence on the regional covariance of water temperature and δ18Owatervalues on interannual and longer timescales in the Baltic Sea. These results showcase the potential for SIMS δ18Oshellvalues inA. borealisshells to provide robust paleoclimate information regarding hydroclimate variability from seasonal to decadal timescales. 
    more » « less
  4. Abstract Tree‐ring carbon and oxygen isotope ratios have been used to understand past dynamics in forest carbon and water cycling. Recently, this has been possible for different parts of single growing seasons by isolating anatomical sections within individual annual rings. Uncertainties in this approach are associated with correlated climate legacies that can occur at a higher frequency, such as across successive seasons, or a lower frequency, such as across years. The objective of this study was to gain insight into how legacies affect cross‐correlation in the δ13C and δ18O isotope ratios in the earlywood (EW) and latewood (LW) fractions ofPinus ponderosatrees at thirteen sites across a latitudinal gradient influenced by the North American Monsoon (NAM) climate system. We observed that δ13C from EW and LW has significant positive cross‐correlations at most sites, whereas EW and LW δ18O values were cross‐correlated at about half the sites. Using combined statistical and mechanistic models, we show that cross‐correlations in both δ13C and δ18O can be largely explained by a low‐frequency (multiple‐year) mode that may be associated with long‐term climate change. We isolated, and statistically removed, the low‐frequency correlation, which resulted in greater geographical differentiation of the EW and LW isotope signals. The remaining higher‐frequency (seasonal) cross‐correlations between EW and LW isotope ratios were explored using a mechanistic isotope fractionation–climate model. This showed that lower atmospheric vapor pressure deficits associated with monsoon rain increase the EW‐LW differentiation for both δ13C and δ18O at southern sites, compared to northern sites. Our results support the hypothesis that dominantly unimodal precipitation regimes, such as near the northern boundary of the NAM, are more likely to foster cross‐correlations in the isotope signals of EW and LW, potentially due to greater sharing of common carbohydrate and soil water resource pools, compared to southerly sites with bimodal precipitation regimes. 
    more » « less
  5. Abstract Eocene climate cooling, driven by the fallingpCO2and tectonic changes in the Southern Ocean, impacted marine ecosystems. Sharks in high‐latitude oceans, sensitive to these changes, offer insights into both environmental shifts and biological responses, yet few paleoecological studies exist. The Middle‐to‐Late Eocene units on Seymour Island, Antarctica, provide a rich, diverse fossil record, including sharks. We analyzed the oxygen isotope composition of phosphate from shark tooth bioapatite (δ18Op) and compared our results to co‐occurring bivalves and predictions from an isotope‐enabled global climate model to investigate habitat use and environmental conditions. Bulk δ18Opvalues (mean 22.0 ± 1.3‰) show no significant changes through the Eocene. Furthermore, the variation in bulk δ18Opvalues often exceeds that in simulated seasonal and regional values. Pelagic and benthic sharks exhibit similar δ18Opvalues across units but are offset relative to bivalve and modeled values. Some taxa suggest movements into warmer or more brackish waters (e.g.,Striatolamia,Carcharias) or deeper, colder waters (e.g.,Pristiophorus). Taxa likeRajaandSqualusdisplay no shift, tracking local conditions in Seymour Island. The lack of difference in δ18Opvalues between pelagic and benthic sharks in the Late Eocene could suggest a poorly stratified water column, inconsistent with a fully opened Drake Passage. Our findings demonstrate that shark tooth bioapatite tracks the preferred habitat conditions for individual taxa rather than recording environmental conditions where they are found. A lack of secular variation in δ18Opvalues says more about species ecology than the absence of regional or global environmental changes. 
    more » « less