skip to main content


Title: Relative Survivable Network Design
One of the most important and well-studied settings for network design is edge-connectivity requirements. This encompasses uniform demands such as the Minimum k-Edge-Connected Spanning Subgraph problem (k-ECSS), as well as nonuniform demands such as the Survivable Network Design problem. A weakness of these formulations, though, is that we are not able to ask for fault-tolerance larger than the connectivity. Taking inspiration from recent definitions and progress in graph spanners, we introduce and study new variants of these problems under a notion of relative fault-tolerance. Informally, we require not that two nodes are connected if there are a bounded number of faults (as in the classical setting), but that two nodes are connected if there are a bounded number of faults and the two nodes are connected in the underlying graph post-faults. That is, the subgraph we build must "behave" identically to the underlying graph with respect to connectivity after bounded faults. We define and introduce these problems, and provide the first approximation algorithms: a (1+4/k)-approximation for the unweighted relative version of k-ECSS, a 2-approximation for the weighted relative version of k-ECSS, and a 27/4-approximation for the special case of Relative Survivable Network Design with only a single demand with a connectivity requirement of 3. To obtain these results, we introduce a number of technical ideas that may of independent interest. First, we give a generalization of Jain’s iterative rounding analysis that works even when the cut-requirement function is not weakly supermodular, but instead satisfies a weaker definition we introduce and term local weak supermodularity. Second, we prove a structure theorem and design an approximation algorithm utilizing a new decomposition based on important separators, which are structures commonly used in fixed-parameter algorithms that have not commonly been used in approximation algorithms.  more » « less
Award ID(s):
1910565
NSF-PAR ID:
10391536
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
245
ISSN:
1868-8969
Page Range / eLocation ID:
41:1-41:19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider node-weighted survivable network design (SNDP) in planar graphs and minor-closed families of graphs. The input consists of a node-weighted undirected graph G = ( V , E ) and integer connectivity requirements r ( uv ) for each unordered pair of nodes uv . The goal is to find a minimum weighted subgraph H of G such that H contains r ( uv ) disjoint paths between u and v for each node pair uv . Three versions of the problem are edge-connectivity SNDP (EC-SNDP), element-connectivity SNDP (Elem-SNDP), and vertex-connectivity SNDP (VC-SNDP), depending on whether the paths are required to be edge, element, or vertex disjoint, respectively. Our main result is an O ( k )-approximation algorithm for EC-SNDP and Elem-SNDP when the input graph is planar or more generally if it belongs to a proper minor-closed family of graphs; here, k = max  uv r ( uv ) is the maximum connectivity requirement. This improves upon the O ( k log  n )-approximation known for node-weighted EC-SNDP and Elem-SNDP in general graphs [31]. We also obtain an O (1) approximation for node-weighted VC-SNDP when the connectivity requirements are in {0, 1, 2}; for higher connectivity our result for Elem-SNDP can be used in a black-box fashion to obtain a logarithmic factor improvement over currently known general graph results. Our results are inspired by, and generalize, the work of Demaine, Hajiaghayi, and Klein [13], who obtained constant factor approximations for node-weighted Steiner tree and Steiner forest problems in planar graphs and proper minor-closed families of graphs via a primal-dual algorithm. 
    more » « less
  2. Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. Motivated by several recent studies of local graph algorithms, we consider the following variant of this problem. Let G be a connected bounded-degree graph. Given an edge e in G we would like to decide whether e belongs to a connected subgraph math formula consisting of math formula edges (for a prespecified constant math formula), where the decision for different edges should be consistent with the same subgraph math formula. Can this task be performed by inspecting only a constant number of edges in G? Our main results are: We show that if every t-vertex subgraph of G has expansion math formula then one can (deterministically) construct a sparse spanning subgraph math formula of G using few inspections. To this end we analyze a “local” version of a famous minimum-weight spanning tree algorithm. We show that the above expansion requirement is sharp even when allowing randomization. To this end we construct a family of 3-regular graphs of high girth, in which every t-vertex subgraph has expansion math formula. We prove that for this family of graphs, any local algorithm for the sparse spanning graph problem requires inspecting a number of edges which is proportional to the girth. 
    more » « less
  3. Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider a relaxed version of this problem in the setting of local algorithms. The relaxation is that the constructed subgraph is a sparse spanning subgraph containing at most (1+ϵ)n edges (where n is the number of vertices and ϵ is a given approximation/sparsity parameter). In the local setting, the goal is to quickly determine whether a given edge e belongs to such a subgraph, without constructing the whole subgraph, but rather by inspecting (querying) the local neighborhood of e. The challenge is to maintain consistency. That is, to provide answers concerning different edges according to the same spanning subgraph. We first show that for general bounded-degree graphs, the query complexity of any such algorithm must be Ω(n−−√). This lower bound holds for constant-degree graphs that have high expansion. Next we design an algorithm for (bounded-degree) graphs with high expansion, obtaining a result that roughly matches the lower bound. We then turn to study graphs that exclude a fixed minor (and are hence non-expanding). We design an algorithm for such graphs, which may have an unbounded maximum degree. The query complexity of this algorithm is poly(1/ϵ,h) (independent of n and the maximum degree), where h is the number of vertices in the excluded minor. Though our two algorithms are designed for very different types of graphs (and have very different complexities), on a high-level there are several similarities, and we highlight both the similarities and the differences. 
    more » « less
  4. null (Ed.)
    Graph compression or sparsification is a basic information-theoretic and computational question. A major open problem in this research area is whether $(1+\epsilon)$-approximate cut-preserving vertex sparsifiers with size close to the number of terminals exist. As a step towards this goal, we initiate the study of a thresholded version of the problem: for a given parameter $c$, find a smaller graph, which we call \emph{connectivity-$c$ mimicking network}, which preserves connectivity among $k$ terminals exactly up to the value of $c$. We show that connectivity-$c$ mimicking networks of size $O(kc^4)$ exist and can be found in time $m(c\log n)^{O(c)}$. We also give a separate algorithm that constructs such graphs of size $k \cdot O(c)^{2c}$ in time $mc^{O(c)}\log^{O(1)}n$. These results lead to the first offline data structures for answering fully dynamic $c$-edge-connectivity queries for $c \ge 4$ in polylogarithmic time per query as well as more efficient algorithms for survivable network design on bounded treewidth graphs. 
    more » « less
  5. A t-emulator of a graph G is a graph H that approximates its pairwise shortest path distances up to multiplicative t error. We study fault tolerant t-emulators, under the model recently introduced by Bodwin, Dinitz, and Nazari [ITCS 2022] for vertex failures. In this paper we consider the version for edge failures, and show that they exhibit surprisingly different behavior. In particular, our main result is that, for (2k-1)-emulators with k odd, we can tolerate a polynomial number of edge faults for free. For example: for any n-node input graph, we construct a 5-emulator (k = 3) on O(n^{4/3}) edges that is robust to f = O(n^{2/9}) edge faults. It is well known that Ω(n^{4/3}) edges are necessary even if the 5-emulator does not need to tolerate any faults. Thus we pay no extra cost in the size to gain this fault tolerance. We leave open the precise range of free fault tolerance for odd k, and whether a similar phenomenon can be proved for even k. 
    more » « less