An intrinsically stretchable rubbery semiconductor with high mobility is critical to the realization of high-performance stretchable electronics and integrated devices for many applications where large mechanical deformation or stretching is involved. Here, we report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility, obtained by introducing metallic carbon nanotubes into a rubbery semiconductor composite. This enhancement in effective carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance. Transistors and their arrays fully based on intrinsically stretchable electronic materials were developed, and they retained electrical performances without substantial loss when subjected to 50% stretching. Fully rubbery integrated electronics and logic gates were developed, and they also functioned reliably upon mechanical stretching. A rubbery active matrix based elastic tactile sensing skin to map physical touch was demonstrated to illustrate one of the applications.
more »
« less
Artificial neuromorphic cognitive skins based on distributed biaxially stretchable elastomeric synaptic transistors
Cephalopod (e.g., squid, octopus, etc.) skin is a soft cognitive organ capable of elastic deformation, visualizing, stealth, and camouflaging through complex biological processes of sensing, recognition, neurologic processing, and actuation in a noncentralized, distributed manner. However, none of the existing artificial skin devices have shown distributed neuromorphic processing and cognition capabilities similar to those of a cephalopod skin. Thus, the creation of an elastic, biaxially stretchy device with embedded, distributed neurologic and cognitive functions mimicking a cephalopod skin can play a pivotal role in emerging robotics, wearables, skin prosthetics, bioelectronics, etc. This paper introduces artificial neuromorphic cognitive skins based on arrayed, biaxially stretchable synaptic transistors constructed entirely out of elastomeric materials. Systematic investigation of the synaptic characteristics such as the excitatory postsynaptic current, paired-pulse facilitation index of the biaxially stretchable synaptic transistor under various levels of biaxial mechanical strain sets the operational foundation for stretchy distributed synapse arrays and neuromorphic cognitive skin devices. The biaxially stretchy arrays here achieved neuromorphic cognitive functions, including image memorization, long-term memorization, fault tolerance, programming, and erasing functions under 30% biaxial mechanical strain. The stretchy neuromorphic imaging sensory skin devices showed stable neuromorphic pattern reinforcement performance under both biaxial and nonuniform local deformation.
more »
« less
- Award ID(s):
- 1931893
- PAR ID:
- 10391550
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 23
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Resistive random-access memories are promising analog synaptic devices for efficient bio-inspired neuromorphic computing arrays. Here we first describe working principles for phase-change random-access memory, oxide random-access memory, and conductive-bridging random-access memory for artificial synapses. These devices could allow for dense and efficient storage of analog synapse connections between CMOS neuron circuits. We also discuss challenges and opportunities for analog synaptic devices toward the goal of realizing passive neuromorphic computing arrays. Finally, we focus on reducing spatial and temporal variations, which is critical to experimentally realize powerful and efficient neuromorphic computing systems.more » « less
-
Natural organic materials such as protein and carbohydrates are abundant in nature, renewable, and biodegradable, desirable for the construction of artificial synaptic devices for emerging neuromorphic computing systems with energy efficient operation and environmentally friendly disposal. These artificial synaptic devices are based on memristors or transistors with the memristive layer or gate dielectric formed by natural organic materials. The fundamental requirement for these synaptic devices is the ability to mimic the memory and learning behaviors of biological synapses. This paper reviews the synaptic functions emulated by a variety of artificial synaptic devices based on natural organic materials and provides a useful guidance for testing and investigating more of such devices.more » « less
-
Abstract Recent advancements in wearable sensor technologies have enabled real-time monitoring of physiological and biochemical signals, opening new opportunities for personalized healthcare applications. However, conventional wearable devices often depend on rigid electronics components for signal transduction, processing, and wireless communications, leading to compromised signal quality due to the mechanical mismatches with the soft, flexible nature of human skin. Additionally, current computing technologies face substantial challenges in efficiently processing these vast datasets, with limitations in scalability, high power consumption, and a heavy reliance on external internet resources, which also poses security risks. To address these challenges, we have developed a miniaturized, standalone, chip-less wearable neuromorphic system capable of simultaneously monitoring, processing, and analyzing multimodal physicochemical biomarker data (i.e., metabolites, cardiac activities, and core body temperature). By leveraging scalable printing technology, we fabricated artificial synapses that function as both sensors and analog processing units, integrating them alongside printed synaptic nodes into a compact wearable system embedded with a medical diagnostic algorithm for multimodal data processing and decision making. The feasibility of this flexible wearable neuromorphic system was demonstrated in sepsis diagnosis and patient data classification, highlighting the potential of this wearable technology for real-time medical diagnostics.more » « less
-
Artificial synaptic devices made from natural biomaterials capable of emulating functions of biological synapses, such as synaptic plasticity and memory functions, are desirable for the construction of brain-inspired neuromorphic computing systems. The metal/dielectric/metal device structure is analogous to the pre-synapse/synaptic cleft/post-synapse structure of the biological neuron, while using natural biomaterials promotes ecologically friendly, sustainable, renewable, and low-cost electronic devices. In this work, artificial synaptic devices made from honey mixed with carbon nanotubes, honey-carbon nanotube (CNT) memristors, were investigated. The devices emulated spike-timing-dependent plasticity, with synaptic weight as high as 500%, and demonstrated a paired-pulse facilitation gain of 800%, which is the largest value ever reported. 206-level long-term potentiation (LTP) and long-term depression (LTD) were demonstrated. A conduction model was applied to explain the filament formation and dissolution in the honey-CNT film, and compared to the LTP/LTD mechanism in biological synapses. In addition, the short-term and long-term memory behaviors were clearly demonstrated by an array of 5 × 5 devices. This study shows that the honey-CNT memristor is a promising artificial synaptic device technology for applications in sustainable neuromorphic computing.more » « less
An official website of the United States government

