skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Estimating Instance-dependent Label-noise Transition Matrix using a Deep Neural Network
In label-noise learning, estimating the transition matrix is a hot topic as the matrix plays an important role in building statistically consistent classifiers. Traditionally, the transition from clean labels to noisy labels (i.e., clean-label transition matrix (CLTM)) has been widely exploited to learn a clean label classifier by employing the noisy data. Motivated by that classifiers mostly output Bayes optimal labels for prediction, in this paper, we study to directly model the transition from Bayes optimal labels to noisy labels (i.e., Bayes-label transition matrix (BLTM)) and learn a classifier to predict Bayes optimal labels. Note that given only noisy data, it is ill-posed to estimate either the CLTM or the BLTM. But favorably, Bayes optimal labels have less uncertainty compared with the clean labels, i.e., the class posteriors of Bayes optimal labels are one-hot vectors while those of clean labels are not. This enables two advantages to estimate the BLTM, i.e., (a) a set of examples with theoretically guaranteed Bayes optimal labels can be collected out of noisy data; (b) the feasible solution space is much smaller. By exploiting the advantages, we estimate the BLTM parametrically by employing a deep neural network, leading to better generalization and superior classification performance.  more » « less
Award ID(s):
2007951 2143895
PAR ID:
10391564
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Conference on Machine Learning
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The label noise transition matrix, denoting the transition probabilities from clean labels to noisy labels, is crucial for designing statistically robust solutions. Existing estimators for noise transition matrices, e.g., using either anchor points or clusterability, focus on computer vision tasks that are relatively easier to obtain high-quality representations. We observe that tasks with lower-quality features fail to meet the anchor-point or clusterability condition, due to the coexistence of both uninformative and informative representations. To handle this issue, we propose a generic and practical information-theoretic approach to down-weight the less informative parts of the lower-quality features. This improvement is crucial to identifying and estimating the label noise transition matrix. The salient technical challenge is to compute the relevant information-theoretical metrics using only noisy labels instead of clean ones. We prove that the celebrated f-mutual information measure can often preserve the order when calculated using noisy labels. We then build our transition matrix estimator using this distilled version of features. The necessity and effectiveness of the proposed method are also demonstrated by evaluating the estimation error on a varied set of tabular data and text classification tasks with lower-quality features. 
    more » « less
  2. Daumé III, Hal; Singh, Aarti (Ed.)
    Learning with noisy labels is a common challenge in supervised learning. Existing approaches often require practitioners to specify noise rates, i.e., a set of parameters controlling the severity of label noises in the problem, and the specifications are either assumed to be given or estimated using additional steps. In this work, we introduce a new family of loss functions that we name as peer loss functions, which enables learning from noisy labels and does not require a priori specification of the noise rates. Peer loss functions work within the standard empirical risk minimization (ERM) framework. We show that, under mild conditions, performing ERM with peer loss functions on the noisy data leads to the optimal or a near-optimal classifier as if performing ERM over the clean training data, which we do not have access to. We pair our results with an extensive set of experiments. Peer loss provides a way to simplify model development when facing potentially noisy training labels, and can be promoted as a robust candidate loss function in such situations. 
    more » « less
  3. Meila, Marina; Zhang, Tong (Ed.)
    The label noise transition matrix, characterizing the probabilities of a training instance being wrongly annotated, is crucial to designing popular solutions to learning with noisy labels. Existing works heavily rely on finding “anchor points” or their approximates, defined as instances belonging to a particular class almost surely. Nonetheless, finding anchor points remains a non-trivial task, and the estimation accuracy is also often throttled by the number of available anchor points. In this paper, we propose an alternative option to the above task. Our main contribution is the discovery of an efficient estimation procedure based on a clusterability condition. We prove that with clusterable representations of features, using up to third-order consensuses of noisy labels among neighbor representations is sufficient to estimate a unique transition matrix. Compared with methods using anchor points, our approach uses substantially more instances and benefits from a much better sample complexity. We demonstrate the estimation accuracy and advantages of our estimates using both synthetic noisy labels (on CIFAR-10/100) and real human-level noisy labels (on Clothing1M and our self-collected human-annotated CIFAR-10). Our code and human-level noisy CIFAR-10 labels are available at https://github.com/UCSC-REAL/HOC. 
    more » « less
  4. Learning classifiers that are robust to adversarial examples has received a great deal of recent attention. A major drawback of the standard robust learning framework is there is an artificial robustness radius r that applies to all inputs. This ignores the fact that data may be highly heterogeneous, in which case it is plausible that robustness regions should be larger in some regions of data, and smaller in others. In this paper, we address this limitation by proposing a new limit classifier, called the neighborhood optimal classifier, that extends the Bayes optimal classifier outside its support by using the label of the closest in-support point. We then argue that this classifier maximizes the size of its robustness regions subject to the constraint of having accuracy equal to the Bayes optimal. We then present sufficient conditions under which general non-parametric methods that can be represented as weight functions converge towards this limit, and show that both nearest neighbors and kernel classifiers satisfy them under certain condition 
    more » « less
  5. Oh, A; Naumann, T; Globerson, A; Saenko, K; Hardt, M; Levine, S (Ed.)
    Learning from noisy labels is a long-standing problem in machine learning for real applications. One of the main research lines focuses on learning a label corrector to purify potential noisy labels. However, these methods typically rely on strict assumptions and are limited to certain types of label noise. In this paper, we reformulate the label-noise problem from a generative-model perspective, i.e., labels are generated by gradually refining an initial random guess. This new perspective immediately enables existing powerful diffusion models to seamlessly learn the stochastic generative process. Once the generative uncertainty is modeled, we can perform classification inference using maximum likelihood estimation of labels. To mitigate the impact of noisy labels, we propose Label-Retrieval- Augmented (LRA) diffusion model 1, which leverages neighbor consistency to effectively construct pseudo-clean labels for diffusion training. Our model is flexible and general, allowing easy incorporation of different types of conditional information, e.g., use of pre-trained models, to further boost model performance. Extensive experiments are conducted for evaluation. Our model achieves new state-of-the-art (SOTA) results on all standard real-world benchmark datasets. Remarkably, by incorporating conditional information from the powerful CLIP model, our method can boost the current SOTA accuracy by 10-20 absolute points in many cases. 
    more » « less