The chromatin architecture in promoters is thought to regulate gene expression, but it remains uncertain how most transcription factors (TFs) impact nucleosome position. The MuvB TF complex regulates cell-cycle dependent gene-expression and is critical for differentiation and proliferation during development and cancer. MuvB can both positively and negatively regulate expression, but the structure of MuvB and its biochemical function are poorly understood. Here we determine the overall architecture of MuvB assembly and the crystal structure of a subcomplex critical for MuvB function in gene repression. We find that the MuvB subunits LIN9 and LIN37 function as scaffolding proteins that arrange the other subunits LIN52, LIN54 and RBAP48 for TF, DNA, and histone binding, respectively. Biochemical and structural data demonstrate that MuvB binds nucleosomes through an interface that is distinct from LIN54-DNA consensus site recognition and that MuvB increases nucleosome occupancy in a reconstituted promoter. We find in arrested cells that MuvB primarily associates with a tightly positioned +1 nucleosome near the transcription start site (TSS) of MuvB-regulated genes. These results support a model that MuvB binds and stabilizes nucleosomes just downstream of the TSS on its target promoters to repress gene expression. 
                        more » 
                        « less   
                    
                            
                            Arabidopsis LSH10 transcription factor and OTLD1 histone deubiquitinase interact and transcriptionally regulate the same target genes
                        
                    
    
            Abstract Histone ubiquitylation/deubiquitylation plays a major role in the epigenetic regulation of gene expression. In plants, OTLD1, a member of the ovarian tumor (OTU) deubiquitinase family, deubiquitylates histone 2B and represses the expression of genes involved in growth, cell expansion, and hormone signaling. OTLD1 lacks the intrinsic ability to bind DNA. How OTLD1, as well as most other known plant histone deubiquitinases, recognizes its target genes remains unknown. Here, we show thatArabidopsistranscription factor LSH10, a member of the ALOG protein family, interacts with OTLD1 in living plant cells. Loss-of-function LSH10 mutations relieve the OTLD1-promoted transcriptional repression of the target genes, resulting in their elevated expression, whereas recovery of the LSH10 function results in down-regulated transcription of the same genes. We show that LSH10 associates with the target gene chromatin as well as with DNA sequences in the promoter regions of the target genes. Furthermore, without LSH10, the degree of H2B monoubiquitylation in the target promoter chromatin increases. Hence, our data suggest that OTLD1-LSH10 acts as a co-repressor complex potentially representing a general mechanism for the specific function of plant histone deubiquitinases at their target chromatin. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10391587
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Biology
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2399-3642
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Soldati-Favre, Dominique (Ed.)ABSTRACT ThePlasmodium falciparumalternative histones Pf H2A.Z and Pf H2B.Z are enriched in the same nucleosomes in intergenic euchromatin but depleted from heterochromatin. They occupy most promoters but are only dynamically associated with expression atvargenes. In other organisms, acetylation of H2A.Z is important for its functions in gene expression and chromatin structure. Here, we show that acetylated Pf H2A.Z and Pf H2B.Z are dynamically associated with gene expression at promoters. In addition, acetylated Pf H2A.Z and Pf H2B.Z are antagonized by the sirtuin class III histone deacetylases (HDAC) PfSir2A and B at heterochromatin boundaries and encroach upon heterochromatin in parasites lacking PfSir2A or B. However, the majority of acetylated Pf H2A.Z and Pf H2B.Z are deacetylated by class I or II HDACs. Acetylated Pf H2A.Z and Pf H2B.Z are also dynamically associated with promoter activity of both canonical upstreamvargene promoters andvargene introns. These findings suggest that both acetylated Pf H2A.Z and Pf H2B.Z play critical roles in gene expression and contribute to maintenance of chromatin structure at the boundaries of subtelomeric, facultative heterochromatin, critical for the variegated expression of genes that enable rapid adaptation to altered host environments. IMPORTANCEThe malaria parasitePlasmodium falciparumrelies on variant expression of members of multi-gene families as a strategy for environmental adaptation to promote parasite survival and pathogenesis. These genes are located in transcriptionally silenced DNA regions. A limited number of these genes escape gene silencing, and switching between them confers variant fitness on parasite progeny. Here, we show that PfSir2 histone deacetylases antagonize DNA-interacting acetylated alternative histones at the boundaries between active and silent DNA. This finding implicates acetylated alternative histones in the mechanism regulatingP. falciparumvariant gene silencing and thus malaria pathogenesis. This work also revealed that acetylation of alternative histones at promoters is dynamically associated with promoter activity across the genome, implicating acetylation of alternative histones in gene regulation genome wide. Understanding mechanisms of gene regulation inP. falciparummay aid in the development of new therapeutic strategies for malaria, which killed 619,000 people in 2021.more » « less
- 
            Abstract In all three domains of life, genes with related functions can be organized into specific genomic regions known as gene clusters. In eukaryotes, histone, piRNA (Piwi-interacting RNA), and rDNA (ribosomal DNA) clusters are among the most notable clusters which play fundamental roles in chromatin formation, genome integrity, and translation, respectively. These clusters have long been thought to be regulated by distinct transcriptional mechanisms. In this study, using Caenorhabditis elegans as a model system we identify ATTF-6, a member of the AT-hook family, as a key factor for the expression of histone, piRNA, and 5S rDNA-SL1 (spliced leader 1) clusters. ATTF-6 is essential for C. elegans viability. It forms distinct nuclear foci at both piRNA and 5S rDNA-SL1 clusters. Loss of ATTF-6 leads to a depletion of histone mRNAs, SL1 transcripts, and piRNAs. Additionally, we demonstrate that ATTF-6 is required for the recruitment of USTC (Upstream Sequence Transcription Complex) to piRNA clusters, which is necessary for piRNA production. Collectively, our findings reveal a unifying role for an AT-hook transcription factor in promoting the expression of fundamental gene clusters.more » « less
- 
            Abstract The genusVibrioincludes serious human pathogens, and mollusks are a significant reservoir for species such asV.vulnificus.Vibriospecies encode PecS, a member of the multiple antibiotic resistance regulator (MarR) family of transcription factors;pecSis divergently oriented topecM, which encodes an efflux pump. We report here thatVibriospecies feature frequent duplications ofpecS-pecMgenes, suggesting evolutionary pressures to respond to distinct environmental situations. The singleV.vulnificusPecS binds two sites within thepecS-pecMintergenic region with Kd = 0.3 ± 0.1 nM, a binding that is attenuated by the ligands xanthine and urate, except when promoter DNA is saturated with PecS. A unique target is found in the intergenic region between genes encoding the nitric oxide sensing transcription factor, NsrR, andnod; thenod-encoded nitric oxide dioxygenase is important for preventing nitric oxide stress. Reporter gene assays show that PecS-mediated repression of gene expression can be relieved in presence of ligand. Since xanthine and urate are produced as part of the oxidative burst during host defenses and under molluscan hypoxia, we propose that these intermediates in the host purine degradation pathway function to promote bacterial survival during hypoxia and oxidative stress.more » « less
- 
            SUMMARY Switch defective/sucrose non‐fermentable (SWI/SNF) chromatin remodeling complexes are evolutionarily conserved, multi‐subunit machinery that play vital roles in the regulation of gene expression by controlling nucleosome positioning and occupancy. However, little is known about the subunit composition of SPLAYED (SYD)‐containing SWI/SNF complexes in plants. Here, we show that theArabidopsis thalianaLeaf and Flower Related (LFR) is a subunit of SYD‐containing SWI/SNF complexes. LFR interacts directly with multiple SWI/SNF subunits, including the catalytic ATPase subunit SYD,in vitroandin vivo. Phenotypic analyses oflfr‐2mutant flowers revealed that LFR is important for proper filament and pistil development, resembling the function of SYD. Transcriptome profiling revealed that LFR and SYD shared a subset of co‐regulated genes. We further demonstrate that the LFR and SYD interdependently activate the transcription ofAGAMOUS(AG), a C‐class floral organ identity gene, by regulating the occupation of nucleosome, chromatin loop, histone modification, and Pol II enrichment on theAGlocus. Furthermore, the chromosome conformation capture (3C) assay revealed that the gene loop atAGlocus is negatively correlated with theAGexpression level, and LFR‐SYD was functional to demolish theAGchromatin loop to promote its transcription. Collectively, these results provide insight into the molecular mechanism of the Arabidopsis SYD‐SWI/SNF complex in the control of higher chromatin conformation of the floral identity gene essential to plant reproductive organ development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
