Abstract In this paper, we report, for the first time, a theoretical study on passive photonic devices including optical power splitters/combiners and grating couplers (GCs) operating at non-telecom wavelengths above 2 µ m in a monolithic GaSb platform. Passive components were designed to operate, in particular, at around 2.6 µ m for monolithic integration with active photonic devices on the III–V gallium antimonide material platform. The three popular types of splitters/combiners such as directional couplers, multimode interferometer-, and Y-branch-couplers were theoretically investigated. Based on our optimized design and rigorous analysis, fabrication-compatible 1 × 2 optical power splitters with less than 0.12 dB excess losses, large spectral bandwidth, and a 50:50 splitting ratio are achieved. For fiber-to-chip coupling, we also report the design of GCs with an outcoupling efficiency of ∼29% at 2.56 μ m and a 3 dB bandwidth of 80 nm. The results represent a significant step towards developing a complete functional photonic integrated circuits at mid-wave infrared wavelengths. 
                        more » 
                        « less   
                    
                            
                            Towards GaSb-Based Monolithically Integrated Widely-Tunable Lasers for Extended Short- and Mid-Wave Infrared Wavelengths
                        
                    
    
            A fully-functional photonic integrated circuit (PIC) platform with supporting active and passive components in the extended short- and mid-wave infrared spectral regime is of significant research interest for next-generation optical systems. Here we design offset quantum well-based photonic integrated circuits which primarily consist of four section-based widely tunable single-mode lasers emitting at 2560 nm. The platform requires the selective removal of InGaAsSb multi-quantum wells located above a GaSb-based optical waveguide layer and then subsequent single blanket GaSb regrowth. Encouraging preliminary experimental results on regrowth are also reported to confirm the feasibility of the proposed PICs. The simulation result for the tunable laser design shows that a tuning range as wide as ~120 nm is possible. The quasi-theoretical work performed here is an initial step towards demonstrating complex non-telecommunication PICs which could offer a comprehensive range of photonic functionalities. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2144375
- PAR ID:
- 10391631
- Date Published:
- Journal Name:
- IEEE Journal of Quantum Electronics
- ISSN:
- 0018-9197
- Page Range / eLocation ID:
- 1 to 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Photonic integrated circuits (PICs) with rapid prototyping and reprogramming capabilities promise revolutionary impacts on a plethora of photonic technologies. We report direct-write and rewritable photonic circuits on a low-loss phase-change material (PCM) thin film. Complete end-to-end PICs are directly laser-written in one step without additional fabrication processes, and any part of the circuit can be erased and rewritten, facilitating rapid design modification. We demonstrate the versatility of this technique for diverse applications, including an optical interconnect fabric for reconfigurable networking, a photonic crossbar array for optical computing, and a tunable optical filter for optical signal processing. By combining the programmability of the direct laser writing technique with PCM, our technique unlocks opportunities for programmable photonic networking, computing, and signal processing. Moreover, the rewritable photonic circuits enable rapid prototyping and testing in a convenient and cost-efficient manner, eliminate the need for nanofabrication facilities, and thus promote the proliferation of photonics research and education to a broader community.more » « less
- 
            By-design access to laser wavelength, especially with integrated photonics, is critical to advance quantum sensors, such as optical clocks and quantum-information systems, and open opportunities in optical communication. Semiconductor-laser gain provides exemplary efficiency and integration but merely in developed wavelength bands. Alternatively, nonlinear optics requires control of phase matching, but the principle of nonlinear conversion of a pump laser to a designed wavelength is extensible. We report on laser-wavelength access by versatile customization of optical-parametric oscillation (OPO) with a photonic-crystal ring resonator (PhCR). Leveraging the exquisite control of laser propagation provided by a photonic crystal in a traveling-wave ring resonator, we enable OPO generation across a wavelength range of 1234–2093 nm with a 1550-nm pump and 1016–1110 nm with a 1064-nm pump. Moreover, our platform offers pump-to-sideband conversion efficiency of > 10 % and negligible additive optical-frequency noise across the output range. From laser design to simulation of nonlinear dynamics, we use a Lugiato–Lefever framework that predicts the system characteristics, including bidirectional OPO generation in the PhCR and conversion efficiency in agreement with our observations. Our experiments introduce broadband lasers by design with PhCR OPOs, providing critical functionalities in integrated photonics.more » « less
- 
            Aluminum gallium arsenide-on-insulator (AlGaAsOI) exhibits large χ2 and χ3 optical nonlinearities, a wide tunable bandgap, low waveguide propagation loss, and a large thermo-optic coefficient, making it an exciting platform for integrated quantum photonics. With ultrabright sources of quantum light established in AlGaAsOI, the next step is to develop the critical building blocks for chip-scale quantum photonic circuits. Here we expand the quantum photonic toolbox for AlGaAsOI by demonstrating edge couplers, 3 dB splitters, tunable interferometers, and waveguide crossings with performance comparable to or exceeding silicon and silicon-nitride quantum photonic platforms. As a demonstration, we de-multiplex photonic qubits through an unbalanced interferometer, paving the route toward ultra-efficient and high-rate chip-scale demonstrations of photonic quantum computation and information applications.more » « less
- 
            In the past decade, remarkable advances in integrated photonic technologies have enabled table-top experiments and instrumentation to be scaled down to compact chips with significant reduction in size, weight, power consumption, and cost. Here, we demonstrate an integrated continuously tunable laser in a heterogeneous gallium arsenide-on-silicon nitride (GaAs-on-SiN) platform that emits in the far-red radiation spectrum near 780 nm, with 20 nm tuning range, <6 kHz intrinsic linewidth, and a >40 dB side-mode suppression ratio. The GaAs optical gain regions are heterogeneously integrated with low-loss SiN waveguides. The narrow linewidth lasing is achieved with an extended cavity consisting of a resonator-based Vernier mirror and a phase shifter. Utilizing synchronous tuning of the integrated heaters, we show mode-hop-free wavelength tuning over a range larger than 100 GHz (200 pm). To demonstrate the potential of the device, we investigate two illustrative applications: (i) the linear characterization of a silicon nitride microresonator designed for entangled-photon pair generation and (ii) the absorption spectroscopy and locking to the D1 and D2 transition lines of 87Rb. The performance of the proposed integrated laser holds promise for a broader spectrum of both classical and quantum applications in the visible range, encompassing communication, control, sensing, and computing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    