Abstract Stellar positions and velocities from Gaia are yielding a new view of open cluster dispersal. Here we present an analysis of a group of stars spanning Cepheus (l= 100°) to Hercules (l= 40°), hereafter the Cep-Her complex. The group includes four Kepler objects of interest: Kepler-1643 b (Rp= 2.32 ± 0.13R⊕,P= 5.3 days), KOI-7368 b (Rp= 2.22 ± 0.12R⊕,P= 6.8 days), KOI-7913 Ab (Rp= 2.34 ± 0.18R⊕,P= 24.2 days), and Kepler-1627 Ab (Rp= 3.85 ± 0.11R⊕,P= 7.2 days). The latter Neptune-sized planet is in part of the Cep-Her complex called theδLyr cluster. Here we focus on the former three systems, which are in other regions of the association. Based on kinematic evidence from Gaia, stellar rotation periods from TESS, and spectroscopy, these three objects are also ≈40 million years (Myr) old. More specifically, we find that Kepler-1643 is Myr old, based on its membership in a dense subcluster of the complex called RSG-5. KOI-7368 and KOI-7913 are Myr old, and are in a diffuse region that we call CH-2. Based on the transit shapes and high-resolution imaging, all three objects are most likely planets, with false-positive probabilities of 6 × 10−9, 4 × 10−3, and 1 × 10−4for Kepler-1643, KOI-7368, and KOI-7913, respectively. These planets demonstrate that mini-Neptunes with sizes of ≈2 Earth radii exist at ages of 40 Myr.
more »
« less
An oscillator-driven, time-resolved optical pump/NIR supercontinuum probe spectrometer
We present a novel, to the best of knowledge, time-resolved, optical pump/NIR supercontinuum probe spectrometer suitable for oscillators. A NIR supercontinuum probe spectrum (850–1250 nm) is generated in a photonic crystal fiber, dispersed across a digital micromirror device (DMD), and then raster scanned into a single element detector at a 5 Hz rate. Dual modulation of pump and probe beams at disparate frequencies permits simultaneous measurement of both the bare reflectanceRand its photoinduced change ΔRthrough lock-in detection, allowing for continuously self-normalized measurement of ΔR/R. Example data are presented on a germanium wafer sample that demonstrate for signals of order ΔR/R ∼ 10−3, a 2.87 nm spectral resolution and fs temporal resolution pre-recompression, and comparable sensitivity to standard time-resolved, amplifier-based pump–probe techniques.
more »
« less
- Award ID(s):
- 1945222
- PAR ID:
- 10391709
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 48
- Issue:
- 3
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 570
- Size(s):
- Article No. 570
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Supernova (SN) SN H0pe is a gravitationally lensed, triply imaged, Type Ia SN (SN Ia) discovered in James Webb Space Telescope imaging of the PLCK G165.7+67.0 cluster of galaxies. Well-observed multiply imaged SNe provide a rare opportunity to constrain the Hubble constant (H0), by measuring the relative time delay between the images and modeling the foreground mass distribution. SN H0pe is located atz= 1.783 and is the first SN Ia with sufficient light-curve sampling and long enough time delays for anH0inference. Here we present photometric time-delay measurements and SN properties of SN H0pe. Using JWST/NIRCam photometry, we measure time delays of Δtab= observer-frame days and Δtcb= observer-frame days relative to the last image to arrive (image 2b; all uncertainties are 1σ), which corresponds to a ∼5.6% uncertainty contribution forH0assuming 70 km s−1Mpc−1. We also constrain the absolute magnification of each image toμa= ,μb= ,μc= by comparing the observed peak near-IR magnitude of SN H0pe to the nonlensed population of SNe Ia.more » « less
-
Kähler, C; Longmire, E; Westerweel, J (Ed.)Abstract A direct comparison of the droplet size and number measurements using in-line holography and shadow imaging is presented in three dynamically evolving laboratory scale experiments. The two experimental techniques and image processing algorithms used to measure droplet number and radii are described in detail. Droplet radii as low as$$r = 14$$ µm are measured using in-line holography and$$r = 50$$ µm using shadow imaging. The droplet radius measurement error is estimated using a calibration target (reticle) and it was found that the holographic technique is able to measure droplet radii more accurately than shadow imaging for droplets with$$r \le 625$$ µm. Using the measurements of droplet number and size we quantitatively cross-validate and assess the accuracy of the two measurement techniques. The droplet size distributions,N(r), are measured in all three experiments and are found to agree well between the two measurement techniques. In one of the laboratory experiments, simultaneous measurements of droplets ($$r \ge 14$$ µm, using holography) and dry aerosols ($$0.07 \lessapprox r \lessapprox 2$$ µm, using an scanning mobility particle sizer and$$0.15 \lessapprox r \lessapprox 5$$ µm using an optical particle sizer) are reported, one of the first such comparison to the best of our knowledge. The total number and volume of droplets is found to agree well between both techniques in the three experiments. We demonstrate that a relatively simple shadow imaging technique can be just as reliable when compared to a more sophisticated holographic measurement technique over their common droplet radius measurement range. The agreement in results is shown to be valid over a large range of droplet concentrations, which include experiments with relatively sparse droplet concentrations as low as 0.02 droplets per image. Advantages and disadvantages for the two techniques are discussed in the context of our results. The main advantages to in-line holography are the greater accuracy in droplet radius measurement, greater spatial resolution, larger depth of field, and the high repetition rate and short pulse duration of the laser light source. In comparison, the main advantages to shadow imaging are the simpler experimental setup, image processing algorithm, and fewer computer resources necessary for image processing. Droplet statistics like number and size are found to be very reliable between the two methods for large range of droplet densities,$${\mathcal {P}}_{r>50}$$ , ranging from$$10^{-4} \le {\mathcal {P}}_{r>50} \le 10^{-1}$$ cm$$^{-3}$$ , when the two techniques are implemented as shown in this paper.more » « less
-
Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations.more » « less
-
Abstract We present morphologies of galaxies atz≳ 9 resolved by JWST/NIRCam 2–5μm imaging. Our sample consists of 22 galaxy candidates identified by stringent dropout and photo-zcriteria in GLASS, CEERS, SMACS J0723, and Stephan’s Quintet flanking fields, one of which has been spectroscopically identified atz= 11.44. We perform surface brightness (SB) profile fitting with GALFIT for six bright galaxies with a signal-to-noise ratio = 10–40 on an individual basis and for stacked faint galaxies with secure point-spread functions (PSFs) of the NIRCam real data, carefully evaluating systematics by Monte Carlo simulations. We compare our results with those of previous JWST studies, and confirm that the effective radiireof our measurements are consistent with those of previous measurements atz∼ 9. We obtainre≃ 200–300 pc with the exponential-like profiles, Sérsic indexes ofn≃ 1–1.5, for galaxies atz∼ 12–16, indicating that the relation ofre∝ (1 +z)sfor explains cosmic evolution overz∼ 0–16 for galaxies. One bright (MUV= −21 mag) galaxy atz∼ 12, GL-z12-1, has an extremely compact profile withre= 39 ± 11 pc that is surely extended over the PSF. Even in the case that the GL-z12-1 SB is fit by active galactic nuclei + galaxy composite profiles, the best-fit galaxy component is again compact, pc, which is significantly (>5σ) smaller than the typicalrevalue atz∼ 12. Compared with numerical simulations, we find that such a compact galaxy naturally forms atz≳ 10, and that frequent mergers at the early epoch produce more extended galaxies following there∝ (1 +z)srelation.more » « less
An official website of the United States government
