skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: JWST Photometric Time-delay and Magnification Measurements for the Triply Imaged Type Ia “SN H0pe” at z = 1.78
Abstract Supernova (SN) SN H0pe is a gravitationally lensed, triply imaged, Type Ia SN (SN Ia) discovered in James Webb Space Telescope imaging of the PLCK G165.7+67.0 cluster of galaxies. Well-observed multiply imaged SNe provide a rare opportunity to constrain the Hubble constant (H0), by measuring the relative time delay between the images and modeling the foreground mass distribution. SN H0pe is located atz= 1.783 and is the first SN Ia with sufficient light-curve sampling and long enough time delays for anH0inference. Here we present photometric time-delay measurements and SN properties of SN H0pe. Using JWST/NIRCam photometry, we measure time delays of Δtab= 116.6 9.3 + 10.8 observer-frame days and Δtcb= 48.6 4.0 + 3.6 observer-frame days relative to the last image to arrive (image 2b; all uncertainties are 1σ), which corresponds to a ∼5.6% uncertainty contribution forH0assuming 70 km s−1Mpc−1. We also constrain the absolute magnification of each image toμa= 4.3 1.8 + 1.6 b= 7.6 2.6 + 3.6 c= 6.4 1.5 + 1.6 by comparing the observed peak near-IR magnitude of SN H0pe to the nonlensed population of SNe Ia.  more » « less
Award ID(s):
1908823 2308051
PAR ID:
10507598
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
967
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 50
Size(s):
Article No. 50
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract SN H0pe is a triply imaged supernova (SN) at redshiftz= 1.78 discovered using the James Webb Space Telescope. In order to classify the SN spectroscopically and measure the relative time delays of its three images (designated A, B, and C), we acquired NIRSpec follow-up spectroscopy spanning 0.6–5μm. From the high signal-to-noise spectra of the two bright images B and C, we first classify the SN, whose spectra most closely match those of SN 1994D and SN 2013dy, as a Type Ia SN. We identify prominent blueshifted absorption features corresponding to Siiiλ6355 and CaiiHλ3970 and Kλ3935. We next measure the absolute phases of the three images from our spectra, which allow us to constrain their relative time delays. The absolute phases of the three images, determined by fitting the three spectra to Hsiao07 SN templates, are 6.5 1.8 + 2.4 days, 24.3 3.9 + 3.9 days, and 50.6 15.3 + 16.1 days for the brightest to faintest images. These correspond to relative time delays between Image A and Image B and between Image B and Image C of 122.3 43.8 + 43.7 days and 49.3 14.7 + 12.2 days, respectively. The SALT3-NIR model yields phases and time delays consistent with these values. After unblinding, we additionally explored the effect of using Hsiao07 template spectra for simulations through 80 days instead of 60 days past maximum, and found a small (11.5 and 1.0 days, respectively) yet statistically insignificant (∼0.25σand ∼0.1σ) effect on the inferred image delays. 
    more » « less
  2. Abstract We report the results from a study of two massive (M500c> 6.0 × 1014M) strong-lensing clusters selected from the South Pole Telescope cluster survey for their large Einstein radius (RE> 40″), SPT-CL J2325−4111 and SPT-CL J0049−2440. Ground-based and shallow Hubble Space Telescope (HST) imaging indicated extensive strong-lensing evidence in these fields, with giant arcs spanning 18″ and 31″, respectively, motivating further space-based imaging follow-up. Here, we present multiband HST imaging and ground-based Magellan spectroscopy of the fields, from which we compile detailed strong-lensing models. The lens models of SPT-CL J2325−4111 and SPT-CL J0049−2440 were optimized using nine and eight secure multiply imaged systems with a final image-plane rms of 0 . 63 and 0 . 73, respectively. From the lensing analysis, we measure a projected mass density within 500 kpc ofM(<500 kpc) = (7.30 ± 0.07) × 1014Mand M ( < 500 kpc ) = 7.1 2 0.19 + 0.16 × 1 0 14 Mfor these two clusters, and subhalo mass ratios of 0.12 ± 0.01 and 0.2 1 0.05 + 0.07 , respectively. Both clusters produce a large area with high magnification (μ≥ 3) for a source atz= 9, A | μ | 3 lens = 4.9 3 0.04 + 0.03 arcmin2and A | μ | 3 lens = 3.6 4 0.10 + 0.14 arcmin2, respectively, placing them in the top tier of strong-lensing clusters. We conclude that these clusters are spectacular sightlines for further observations that will reduce the systematic uncertainties due to cosmic variance. This paper provides the community with two additional well-calibrated cosmic telescopes, as strong as the Frontier Fields and suitable for studies of the highly magnified background Universe. 
    more » « less
  3. Abstract The first James Webb Space Telescope (JWST) Near InfraRed Camera imaging in the field of the galaxy cluster PLCK G165.7+67.0 (z= 0.35) uncovered a Type Ia supernova (SN Ia) atz= 1.78, called “SN H0pe.” Three different images of this one SN were detected as a result of strong gravitational lensing, each one traversing a different path in spacetime, thereby inducing a relative delay in the arrival of each image. Follow-up JWST observations of all three SN images enabled photometric and rare spectroscopic measurements of the two relative time delays. Following strict blinding protocols which oversaw a live unblinding and regulated postunblinding changes, these two measured time delays were compared to the predictions of seven independently constructed cluster lens models to measure a value for the Hubble constant,H0 =  71.8 + 9.2 − 8.1 km s−1Mpc−1. The range of admissibleH0values predicted across the lens models limits further precision, reflecting the well-known degeneracies between lens model constraints and time delays. It has long been theorized that a way forward is to leverage a standard candle, but this has not been realized until now. For the first time, the lens models are evaluated by their agreement with the SN absolute magnifications, breaking degeneracies and producing our best estimate,H0 =  75.7 5.5 + 8.1 km s−1Mpc−1. This is the first precise measurement ofH0from a multiply imaged SN Ia and only the second from any multiply imaged SN. 
    more » « less
  4. Abstract We present chemical abundances and velocities of five stars between 0.3 and 1.1 kpc from the center of the Tucana II ultrafaint dwarf galaxy (UFD) from high-resolution Magellan/MIKE spectroscopy. We find that every star is deficient in metals (−3.6 < [Fe/H] < −1.9) and in neutron-capture elements as is characteristic of UFD stars, unambiguously confirming their association with Tucana II. Other chemical abundances (e.g., C, iron peak) largely follow UFD trends and suggest that faint core-collapse supernovae (SNe) dominated the early evolution of Tucana II. We see a downturn in [α/Fe] at [Fe/H] ≈ −2.8, indicating the onset of Type Ia SN enrichment and somewhat extended chemical evolution. The most metal-rich star has strikingly low [Sc/Fe] = −1.29 ± 0.48 and [Mn/Fe] = −1.33 ± 0.33, implying significant enrichment by a sub-Chandrasekhar mass Type Ia SN. We do not detect a radial velocity gradient in Tucana II ( dv helio / d θ 1 = 2.6 2.9 + 3.0 km s−1kpc−1), reflecting a lack of evidence for tidal disruption, and derive a dynamical mass of M 1 / 2 ( r h ) = 1.6 0.7 + 1.1 × 10 6 M. We revisit formation scenarios of the extended component of Tucana II in light of its stellar chemical abundances. We find no evidence that Tucana II had abnormally energetic SNe, suggesting that if SNe drove in situ stellar halo formation, then other UFDs should show similar such features. Although not a unique explanation, the decline in [α/Fe] is consistent with an early galactic merger triggering later star formation. Future observations may disentangle such formation channels of UFD outskirts. 
    more » « less
  5. Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find ( Ω M , w ) = ( 0.264 0.096 + 0.074 , 0.80 0.16 + 0.14 ) in flatwCDM. For flatw0waCDM, we find ( Ω M , w 0 , w a ) = ( 0.495 0.043 + 0.033 , 0.36 0.30 + 0.36 , 8.8 4.5 + 3.7 ) , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses. 
    more » « less