skip to main content


Title: On Committing Authenticated-Encryption
We provide a strong definition for committing authenticated- encryption (cAE), as well as a framework that encompasses earlier and weaker definitions. The framework attends not only to what is committed but also the extent to which the adversary knows or controls keys. We slot into our framework strengthened cAE-attacks on GCM and OCB. Our main result is a simple and efficient construction, CTX, that makes a nonce-based AE (nAE) scheme committing. The transformed scheme achieves the strongest security notion in our framework. Just the same, the added computational cost (on top of the nAE scheme’s cost) is a single hash over a short string, a cost independent of the plaintext’s length. And there is no increase in ciphertext length compared to the base nAE scheme. That such a thing is possible, let alone easy, upends the (incorrect) intuition that you can’t commit to a plaintext or ciphertext without hashing one or the other. And it motivates a simple and practical tweak to AE-schemes to make them committing.  more » « less
Award ID(s):
1717542
NSF-PAR ID:
10391723
Author(s) / Creator(s):
;
Editor(s):
Atluri, Vijayalakshmi; Di Pietro, Roberto; Jensen, Christian D.; Meng, Weizhi
Date Published:
Journal Name:
EUROPEAN Symposium on Research in Computer Science: ESORICS 2022
Volume:
13555
Page Range / eLocation ID:
275 - 294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The customary formulation of authenticated encryption (AE) requires the decrypting party to supply the correct nonce with each ciphertext it decrypts. To enable this, the nonce is often sent in the clear alongside the ciphertext. But doing this can forfeit anonymity and degrade usability. Anonymity can also be lost by transmitting associated data (AD) or a session-ID (used to identify the operative key). To address these issues, we introduce anonymous AE, wherein ciphertexts must conceal their origin even when they are understood to encompass everything needed to decrypt (apart from the receiver’s secret state). We formalize a type of anonymous AE we call anAE, anonymous nonce-based AE, which generalizes and strengthens conventional nonce-based AE, nAE. We provide an efficient construction for anAE, NonceWrap, from an nAE scheme and a blockcipher. We prove NonceWrap secure. While anAE does not address privacy loss through traffic-flow analysis, it does ensure that ciphertexts, now more expansively construed, do not by themselves compromise privacy. 
    more » « less
  2. We give an attribute-based encryption system for Turing Machines that is provably secure assuming only the existence of identity-based encryption (IBE) for large identity spaces. Currently, IBE is known to be realizable from most mainstream number theoretic assumptions that imply public key cryptography including factoring, the search Diffie-Hellman assumption, and the Learning with Errors assumption. Our core construction provides security against an attacker that makes a single key query for a machine before declaring a challenge string that is associated with the challenge ciphertext. We build our construction by leveraging a Garbled RAM construction of Gentry, Halevi, Raykova, and Wichs; however, to prove security we need to introduce a new notion of security called iterated simulation security. We then show how to transform our core construction into one that is secure for an a-priori bounded number of key queries that can occur either before or after the challenge ciphertext. We do this by first showing how one can use a special type of non-committing encryption to transform a system that is secure only if a single key is chosen before the challenge ciphertext is declared into one where the single key can be requested either before or after the challenge ciphertext. We give a simple construction of this non-committing encryption from public key encryption in the Random Oracle Model. Next, one can apply standard combinatorial techniques to lift from single-key adaptive security to -key adaptive security. 
    more » « less
  3. This paper provides efficient authenticated-encryption (AE) schemes in which a ciphertext is a commitment to the key. These are extended, at minimal additional cost, to schemes where the ciphertext is a commitment to all encryption inputs, meaning key, nonce, associated data and message. Our primary schemes are modifications of GCM (for basic, unique-nonce AE security) and AES-GCM-SIV (for misuse-resistant AE security) and add both forms of commitment without any increase in ciphertext size. We also give more generic, but somewhat more costly, solutions. 
    more » « less
  4. One of the primary research challenges in Attribute-Based Encryption (ABE) is constructing and proving cryptosystems that are adaptively secure. To date the main paradigm for achieving adaptive security in ABE is dual system encryption. However, almost all such solutions in bilinear groups rely on (variants of) either the subgroup decision problem over composite order groups or the decision linear assumption. Both of these assumptions are decisional rather than search assumptions and the target of the assumption is a source or bilinear group element. This is in contrast to earlier selectively secure ABE systems which can be proven secure from either the decisional or search Bilinear Diffie-Hellman assumption. In this work we make progress on closing this gap by giving a new ABE construction for the subset functionality and prove security under the Search Bilinear Diffie-Hellman assumption. We first provide a framework for proving adaptive security in Attribute-Based Encryption systems. We introduce a concept of ABE with deletable attributes where any party can take a ciphertext encrypted under the attribute string and modify it into a ciphertext encrypted under any string where is derived by replacing any bits of with symbols (i.e. ``deleting" attributes of ). The semantics of the system are that any private key for a circuit can be used to decrypt a ciphertext associated with if none of the input bits read by circuit are symbols and . We show a pathway for combining ABE with deletable attributes with constrained psuedorandom functions to obtain adaptively secure ABE building upon the recent work of Tsabary. Our new ABE system will be adaptively secure and be a ciphertext-policy ABE that supports the same functionality as the underlying constrained PRF as long as the PRF is ``deletion conforming". Here we also provide a simple constrained PRF construction that gives subset functionality. Our approach enables us to access a broader array of Attribute-Based Encryption schemes support deletion of attributes. For example, we show that both the Goyal~et al.~(GPSW) and Boyen ABE schemes can trivially handle a deletion operation. And, by using a hardcore bit variant of GPSW scheme we obtain an adaptively secure ABE scheme under the Search Bilinear Diffie-Hellman assumption in addition to pseudo random functions in NC1. This gives the first adaptively secure ABE from a search assumption as all prior work relied on decision assumptions over source group elements. 
    more » « less
  5. We present a new general framework for constructing com- pact and adaptively secure attribute-based encryption (ABE) schemes from k-Lin in asymmetric bilinear pairing groups. Previously, the only construction [Kowalczyk and Wee, Eurocrypt ’19] that simultaneously achieves compactness and adaptive security from static assumptions sup- ports policies represented by Boolean formulae. Our framework enables supporting more expressive policies represented by arithmetic branching programs. Our framework extends to ABE for policies represented by uniform models of computation such as Turing machines. Such policies enjoy the feature of being applicable to attributes of arbitrary lengths. We obtain the first compact adaptively secure ABE for deterministic and non-deterministic finite automata (DFA and NFA) from k-Lin, previously unknown from any static assumptions. Beyond finite automata, we obtain the first ABE for large classes of uniform computation, captured by deterministic and non-deterministic logspace Turing machines (the complexity classes L and NL) based on k-Lin. Our ABE scheme has compact secret keys of size linear in the description size of the Turing machine M. The ciphertext size grows linearly in the input length, but also linearly in the time complexity, and exponentially in the space complexity. Irrespective of compactness, we stress that our scheme is the first that supports large classes of Turing machines based solely on standard assumptions. In comparison, previous ABE for general Turing machines all rely on strong primitives related to indistinguishability obfuscation. 
    more » « less