skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1717542

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atluri, Vijayalakshmi; Di Pietro, Roberto; Jensen, Christian D.; Meng, Weizhi (Ed.)
    We provide a strong definition for committing authenticated- encryption (cAE), as well as a framework that encompasses earlier and weaker definitions. The framework attends not only to what is committed but also the extent to which the adversary knows or controls keys. We slot into our framework strengthened cAE-attacks on GCM and OCB. Our main result is a simple and efficient construction, CTX, that makes a nonce-based AE (nAE) scheme committing. The transformed scheme achieves the strongest security notion in our framework. Just the same, the added computational cost (on top of the nAE scheme’s cost) is a single hash over a short string, a cost independent of the plaintext’s length. And there is no increase in ciphertext length compared to the base nAE scheme. That such a thing is possible, let alone easy, upends the (incorrect) intuition that you can’t commit to a plaintext or ciphertext without hashing one or the other. And it motivates a simple and practical tweak to AE-schemes to make them committing. 
    more » « less
  2. null (Ed.)
    Abstract Aiming to strengthen classical secret-sharing to make it a more directly useful primitive for human endusers, we develop definitions, theorems, and efficient constructions for what we call adept secret-sharing. Our primary concerns are the properties we call privacy , authenticity , and error correction . Privacy strengthens the classical requirement by ensuring maximal confidentiality even if the dealer does not employ fresh, uniformly random coins with each sharing. That might happen either intentionally—to enable reproducible secretsharing— or unintentionally, when an entropy source fails. Authenticity is a shareholder’s guarantee that a secret recovered using his or her share will coincide with the value the dealer committed to at the time the secret was shared. Error correction is the guarantee that recovery of a secret will succeed, also identifying the valid shares, exactly when there is a unique explanation as to which shares implicate what secret. These concerns arise organically from a desire to create general-purpose libraries and apps for secret sharing that can withstand both strong adversaries and routine operational errors. 
    more » « less
  3. The customary formulation of authenticated encryption (AE) requires the decrypting party to supply the correct nonce with each ciphertext it decrypts. To enable this, the nonce is often sent in the clear alongside the ciphertext. But doing this can forfeit anonymity and degrade usability. Anonymity can also be lost by transmitting associated data (AD) or a session-ID (used to identify the operative key). To address these issues, we introduce anonymous AE, wherein ciphertexts must conceal their origin even when they are understood to encompass everything needed to decrypt (apart from the receiver’s secret state). We formalize a type of anonymous AE we call anAE, anonymous nonce-based AE, which generalizes and strengthens conventional nonce-based AE, nAE. We provide an efficient construction for anAE, NonceWrap, from an nAE scheme and a blockcipher. We prove NonceWrap secure. While anAE does not address privacy loss through traffic-flow analysis, it does ensure that ciphertexts, now more expansively construed, do not by themselves compromise privacy. 
    more » « less
  4. Lange, Tanja; Dunkelman, Orr (Ed.)
    Many people seem to think that cryptography is all about creating and analyzing cryptographic schemes. This view ignores the centrality of definitions in shaping the character of the field. More than schemes or their analysis, it is definitions that most occupy my thoughts. In this paper, written to accompany an invited talk at Latincrypt 2017, I try to explain my own fascination with definitions. I outline a few of the definitions I’ve recently worked on—garbling schemes, online AE, and onion encryption—and provide some general advice and comments about the definitional enterprise. 
    more » « less
  5. Often the simplest way of specifying game-based cryptographic definitions is apparently barred because the adversary would have some trivial win. Disallowing or invalidating these wins can lead to complex or unconvincing definitions. We suggest a generic way around this difficulty. We call it indistinguishability up to correctness, or IND|C. Given games G and H and a correctness condition C we define an advantage measure Adv^indc_{G,H,C} wherein G/H distinguishing attacks are effaced to the extent that they are inevitable due to C. We formalize this in the language of oracle silencing, an alternative to exclusion-style and penalty-style definitions. We apply our ideas to a domain where game-based definitions have been cumbersome: stateful authenticated-encryption (sAE). We rework existing sAE notions and encompass new ones, like replay-free AE permitting a specified degree of out-of-order message delivery. 
    more » « less
  6. Often the simplest way of specifying game-based cryptographic definitions is apparently barred because the adversary would have some trivial win. Disallowing or invalidating these wins can lead to complex or unconvincing definitions. We suggest a generic way around this difficulty. We call it indistinguishability up to correctness, or IND|C. Given games G and H and a correctness condition C we define an advantage measure Adv^indc_{G,H,C} wherein G/H distinguishing attacks are effaced to the extent that they are inevitable due to C. We formalize this in the language of oracle silencing, an alternative to exclusion-style and penalty-style definitions. We apply our ideas to a domain where game-based definitions have been cumbersome: stateful authenticated-encryption (sAE). We rework existing sAE notions and encompass new ones, like replay-free AE permitting a specified degree of out-of-order message delivery. 
    more » « less
  7. Abstract Nested symmetric encryption is a well-known technique for low-latency communication privacy. But just what problem does this technique aim to solve? In answer, we provide a provable-security treatment for onion authenticated-encryption (onion-AE). Extending the conventional notion for authenticated-encryption, we demand indistinguishability from random bits and time-of-exit authenticity verification. We show that the encryption technique presently used in Tor does not satisfy our definition of onion-AE security, but that a construction by Mathewson (2012), based on a strong, tweakable, wideblock PRP, does do the job. We go on to discuss three extensions of onion-AE, giving definitions to handle inbound flows, immediate detection of authenticity errors, and corrupt ORs. 
    more » « less