skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surfaces Decorated with Enantiomorphically Pure Polymer Nanohelices via Hierarchical Chirality Transfer across Multiple Length Scales
Abstract Mesoscale chiral materials are prepared by lithographic methods, assembly of chiral building blocks, and through syntheses in the presence of polarized light. Typically, these processes result in micrometer‐sized structures, require complex top–down manipulation, or rely on tedious asymmetric separation. Chemical vapor deposition (CVD) polymerization of chiral precursors into supported films of liquid crystals (LCs) are discovered to result in superhierarchical arrangements of enantiomorphically pure nanofibers. Depending on the molecular chirality of the 1‐hydroxyethyl [2.2]paracyclophane precursor, extended arrays of enantiomorphic nanohelices are formed from achiral nematic templates. Arrays of chiral nanohelices extend over hundreds of micrometers and consistently display enantiomorphic micropatterns. The pitch of individual nanohelices depends on the enantiomeric excess and the purity of the chiral precursor, consistent with the theoretical model of a doubly twisted LC director configuration. During CVD of chiral precursors into cholesteric LC films, aspects of molecular and mesoscale asymmetry combine constructively to form regularly twisted nanohelices. Enantiomorphic surfaces permit the tailoring of a wide range of functional properties, such as the asymmetric induction of weak chiral systems.  more » « less
Award ID(s):
1719875 1916888
PAR ID:
10391770
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
9
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Materials that undergo reversible changes in form typically require top‐down processing to program the microstructure of the material. As a result, it is difficult to program microscale, 3D shape‐morphing materials that undergo non‐uniaxial deformations. Here, a simple bottom‐up fabrication approach to prepare bending microactuators is described. Spontaneous self‐assembly of liquid crystal (LC) monomers with controlled chirality within 3D micromold results in a change in molecular orientation across thickness of the microstructure. As a result, heating induces bending in these microactuators. The concentration of chiral dopant is varied to adjust the chirality of the monomer mixture. Liquid crystal elastomer (LCE) microactuators doped with 0.05 wt% of chiral dopant produce needle‐shaped actuators that bend from flat to an angle of 27.2 ± 11.3° at 180 °C. Higher concentrations of chiral dopant lead to actuators with reduced bending, and lower concentrations of chiral dopant lead to actuators with poorly controlled bending. Asymmetric molecular alignment inside 3D structure is confirmed by sectioning actuators. Arrays of microactuators that all bend in the same direction can be fabricated if symmetry of geometry of the microstructure is broken. It is envisioned that the new platform to synthesize microstructures can further be applied in soft robotics and biomedical devices. 
    more » « less
  2. Abstract Molecular structuring of soft matter with precise arrangements over multiple hierarchical levels, especially on polymer surfaces, and enabling their post‐synthetic modulation has tremendous potential for application in molecular engineering and interfacial science. Here, recent research and developments in design strategies for structurally controlled polymer surfaces via cyclophane‐based chemical vapor deposition (CVD) polymerization with precise control over chemical functionalities and post‐CVD fabrication via orthogonal surface functionalization that facilitates the formation of designable biointerfaces are summarized. Particular discussion about innovative approaches for the templated synthesis of shape‐controlled CVD polymers, ranging from 1D to 3D architecture, including inside confined nanochannels, nanofibers/nanowires synthesis into an anisotropic media such as liquid crystals, and CVD polymer nanohelices via hierarchical chirality transfer across multiple length scales is provided. Aiming at multifunctional polymer surfaces via CVD copolymerization of multiple precursors, the structural and functional design of the fundamental [2.2]paracyclophane (PCP) precursor molecules, that is, functional CVD monomer chemistry is also described. Technologically advanced and innovative surface deposition techniques toward topological micro‐ and nanostructuring, including microcontact printing, photopatterning, photomask, and lithographic techniques such as dip‐pen nanolithography, showcasing research from the authors’ laboratories as well as other's relevant important findings in this evolving field are highlighted that have introduced new programmable CVD polymerization capabilities. Perspectives, current limitations, and future considerations are provided. 
    more » « less
  3. Although it has long been known that metal-containing compounds can serve as catalysts for chemical vapor deposition (CVD) of films from other precursors, we show that metal-containing compounds can also inhibit CVD nucleation or growth. For two precursors A and B with growth onset temperatures TgA < TgB when used independently, it is possible that B can inhibit growth from A when the two precursors are coflowed onto a substrate at a temperature (T) where TgA < T < TgB. Here, we consider three precursors: AlH3⋅NMe3 (Tg = 130 °C, Me = CH3), Hf(BH4)4 (Tg = 170 °C), and AlMe3 (Tg = 300 °C). We find that (i) nucleation of Al from AlH3⋅NMe3 is inhibited by Hf(BH4)4 at 150 °C on two oxide surfaces (Si with native oxide and borosilicate glass), (ii) nucleation and growth of HfB2 is inhibited by AlMe3 at 250 °C on native oxide substrates and on HfB2 nuclei, and (iii) nucleation of Al from AlH3⋅NMe3 is inhibited by AlMe3 at 200 °C on native oxide substrates. Inhibition by Hf(BH4)4 is transient and persists only as long as its coflow is maintained; in contrast, AlMe3 inhibition of HfB2 growth is more permanent and continues after coflow is halted. As a result of nucleation inhibition, AlMe3 coflow enhances selectivity for HfB2 deposition on Au (growth) over Al2O3 (nongrowth) surfaces, and Hf(BH4)4 coflow makes it possible to deposit Al on Al nuclei and not on the surrounding oxide substrate. We propose the following criteria to identify candidate molecules for other precursor–inhibitor combinations: (i) the potential inhibitor should have a higher Tg than the desired film precursor, (ii) the potential inhibitor should be unreactive toward the desired film precursor, and (iii) at the desired growth temperature, the potential inhibitor should adsorb strongly enough to form a saturated monolayer on the intended nongrowth surface at accessible inhibitor pressures. 
    more » « less
  4. Abstract Natural polymers, particularly plant‐derived nanocelluloses, self‐organize into hierarchical structures, enabling mechanical robustness, bright iridescence, emission, and polarized light reflection. These biophotonic properties are facilitated by the assembly of individual components during evaporation, such as cellulose nanocrystals (CNCs), which exhibit a left‐handed helical pitch in a chiral nematic state. This work demonstrates how optically active films with pre‐programmed opposite handedness (left or right) can be constructed via shear‐induced twisted printing with clockwise and counter‐clockwise shearing vectors. The resulting large‐area thin films are transparent yet exhibit pre‐determined mirror‐symmetrical optical activity, enabling the distinction of absorbed and emitted circularly polarized light. This processing method allows for sequential printing of thin and ultrathin films with twisted layered organization and on‐demand helicity. The complex light polarization behavior is due to step‐like changes in linear birefringence within each deposited layer and circular birefringence, different from that of conventional CNC films as revealed with Muller matrix analysis. Furthermore, intercalating an achiral organic dye into printed structures induces circularly polarized luminescence while preserving high transmittance and controlled handedness. These results suggest that twisted sequential printing can facilitate the construction of chiroptical metamaterials with tunable circular polarization, absorption, and emission for optical filters, encryption, photonic coatings, and chiral sensors. 
    more » « less
  5. Abstract A great proportion of molecular crystals can be made to grow as twisted fibrils. Typically, this requires high crystallization driving forces that lead to spherulitic textures. Here, it is shown how micron size channels fabricated from poly(dimethylsiloxane) (PDMS) serve to collimate the circular polycrystalline growth fronts of optically banded spherulites of twisted crystals of three compounds, coumarin, 2,5‐bis(3‐dodecyl‐2‐thienyl)‐thiazolo[5,4‐d]thiazole, and tetrathiafulvalene. The relationships between helicoidal pitch, growth front coherence, and channel width are measured. As channels spill into open spaces, collimated crystals “diffract” via small angle branching. On the other hand, crystals grown together from separate channels whose bands are out of phase ultimately become a single in‐phase bundle of fibrils by a cooperative mechanism yet unknown. The isolation of a single twist sense in individual channels is described. We forecast that such chiral molecular crystalline channels may function as chiral optical wave guides. 
    more » « less