Deep optical and near-infrared imaging of the entire Galactic plane is essential for understanding our Galaxy’s stars, gas, and dust. The second data release of the Dark Energy Camera (DECam) Plane Survey extends the five-band optical and near-infrared survey of the southern Galactic plane to cover 6.5% of the sky, ∣
- Award ID(s):
- 2019786
- NSF-PAR ID:
- 10391820
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 264
- Issue:
- 2
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 28
- Size(s):
- Article No. 28
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg 2 of the high-Galactic-latitude (∣ b ∣ > 10°) sky in four broadband optical/near-infrared filters ( g , r , i , z ). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5 σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg 2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform.more » « less
-
Abstract The Massive and Distant Clusters of WISE Survey 2 (MaDCoWS2) is a new survey designed as the successor of the original MaDCoWS survey. MaDCoWS2 improves upon its predecessor by using deeper optical and infrared data and a more powerful detection algorithm (PZWav). As input to the search, we use
grz photometry from the DECam Legacy Survey (DECaLS) in combination with W1 and W2 photometry from the CatWISE2020 catalog to derive the photometric redshifts with full redshift probability distribution functions for Wide-field Infrared Survey Explorer (WISE)-selected galaxies. Cluster candidates are then detected using the PZWav algorithm to find three-dimensional galaxy overdensities from the sky positions and photometric redshifts. This paper provides the first MaDCoWS2 data release, covering 1461 (1838 without masking) deg2centered on the Hyper-SuprimeCam Subaru Strategic Program equatorial fields. Within this region, we derive a catalog of 22,970 galaxy cluster candidates detected at a signal-to-noise ratio (S/N) > 5. These clusters span the redshift range 0.1 <z < 2, including 1312 candidates atz > 1.5. We compare MaDCoWS2 to six existing catalogs in the area. We rediscover 60%–92% of the clusters in these surveys at S/N > 5. The medians of the absolute redshift offset are <0.02 relative to these surveys, while the standard deviations are less than 0.06. The median offsets between the detection position from MaDCoWS2 and other surveys are less than 0.25 Mpc. We quantify the relation between S/N and gas mass, total mass, luminosity, and richness from other surveys using a redshift-dependent power law relation. We find that the S/N-richness relation exhibits the lowest scatter. -
A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93Twas capable of acetylenotrophic and diazotrophic growth, grew at 22–37 °C, pH 6.3–8.5 and in the presence of 10–45 g l−1NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93Trepresented a member of the genus
with highest 16S rRNA gene sequence similarities toSyntrophotalea DSM 3246T(96.6 %),Syntrophotalea acetylenica DSM 2380T(96.5 %), andSyntrophotalea carbinolica DSM 2394T(96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93Thad low genome-wide average nucleotide identity (81–87.5 %) and <70 % digital DNA–DNA hybridization value with other members of the genusSyntrophotalea venetiana . The phylogenetic position of SFB93Twithin the familySyntrophotalea and as a novel member of the genusSyntrophotaleaceae was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species,Syntrophotalea Syntrophotalea acetylenivorans sp. nov., is proposed, with SFB93T(=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain. -
Abstract We present component-separated maps of the primary cosmic microwave background/kinematic Sunyaev–Zel’dovich (SZ) amplitude and the thermal SZ Compton-
y parameter, created using data from the South Pole Telescope (SPT) and the Planck satellite. These maps, which cover the ∼2500 deg2of the southern sky imaged by the SPT-SZ survey, represent a significant improvement over previous such products available in this region by virtue of their higher angular resolution ( for our highest-resolution Compton-y maps) and lower noise at small angular scales. In this work we detail the construction of these maps using linear combination techniques, including our method for limiting the correlation of our lowest-noise Compton-y map products with the cosmic infrared background. We perform a range of validation tests on these data products to test our sky modeling and combination algorithms, and we find good performance in all of these tests. Recognizing the potential utility of these data products for a wide range of astrophysical and cosmological analyses, including studies of the gas properties of galaxies, groups, and clusters, we make these products publicly available athttp://pole.uchicago.edu/public/data/sptsz_ymap and on the NASA/LAMBDA website. -
Perturbation Monte Carlo (pMC) has been previously proposed to rapidly recompute optical measurements when small perturbations of optical properties are considered, but it was largely restricted to changes associated with prior tissue segments or regions-of-interest. In this work, we expand pMC to compute spatially and temporally resolved sensitivity profiles, i.e. the Jacobians, for diffuse optical tomography (DOT) applications. By recording the pseudo random number generator (PRNG) seeds of each detected photon, we are able to “replay” all detected photons to directly create the 3D sensitivity profiles for both absorption and scattering coefficients. We validate the replay-based Jacobians against the traditional adjoint Monte Carlo (aMC) method, and demonstrate the feasibility of using this approach for efficient 3D image reconstructions using
in vitro hyperspectral wide-field DOT measurements. The strengths and limitations of the replay approach regarding its computational efficiency and accuracy are discussed, in comparison with aMC, for point-detector systems as well as wide-field pattern-based and hyperspectral imaging systems. The replay approach has been implemented in both of our open-source MC simulators - MCX and MMC (http://mcx.space )