Abstract We report the discovery of six ultra-faint Milky Way satellites identified through matched-filter searches conducted using Dark Energy Camera (DECam) data processed as part of the second data release of the DECam Local Volume Exploration (DELVE) survey. Leveraging deep Gemini/GMOS-N imaging (for four candidates) as well as follow-up DECam imaging (for two candidates), we characterize the morphologies and stellar populations of these systems. We find that these candidates all share faint absolute magnitudes ( M V ≥ −3.2 mag) and old, metal-poor stellar populations ( τ > 10 Gyr, [Fe/H] < −1.4 dex). Three of these systems are more extended ( r 1/2 > 15 pc), while the other three are compact ( r 1/2 < 10 pc). From these properties, we infer that the former three systems (Boötes V, Leo Minor I, and Virgo II) are consistent with ultra-faint dwarf galaxy classifications, whereas the latter three (DELVE 3, DELVE 4, and DELVE 5) are likely ultra-faint star clusters. Using data from the Gaia satellite, we confidently measure the proper motion of Boötes V, Leo Minor I, and DELVE 4, and tentatively detect a proper-motion signal from DELVE 3 and DELVE 5; no signal is detected for Virgo II. We use these measurements to explore possible associations between the newly discovered systems and the Sagittarius dwarf spheroidal, the Magellanic Clouds, and the Vast Polar Structure, finding several plausible associations. Our results offer a preview of the numerous ultra-faint stellar systems that will soon be discovered by the Vera C. Rubin Observatory and highlight the challenges of classifying the faintest stellar systems. 
                        more » 
                        « less   
                    
                            
                            The DECam Local Volume Exploration Survey Data Release 2
                        
                    
    
            Abstract We present the second public data release (DR2) from the DECam Local Volume Exploration survey (DELVE). DELVE DR2 combines new DECam observations with archival DECam data from the Dark Energy Survey, the DECam Legacy Survey, and other DECam community programs. DELVE DR2 consists of ∼160,000 exposures that cover >21,000 deg 2 of the high-Galactic-latitude (∣ b ∣ > 10°) sky in four broadband optical/near-infrared filters ( g , r , i , z ). DELVE DR2 provides point-source and automatic aperture photometry for ∼2.5 billion astronomical sources with a median 5 σ point-source depth of g = 24.3, r = 23.9, i = 23.5, and z = 22.8 mag. A region of ∼17,000 deg 2 has been imaged in all four filters, providing four-band photometric measurements for ∼618 million astronomical sources. DELVE DR2 covers more than 4 times the area of the previous DELVE data release and contains roughly 5 times as many astronomical objects. DELVE DR2 is publicly available via the NOIRLab Astro Data Lab science platform. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10346880
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 261
- Issue:
- 2
- ISSN:
- 0067-0049
- Page Range / eLocation ID:
- 38
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT We describe the Dark Energy Survey (DES) Deep Fields, a set of images and associated multiwavelength catalogue (ugrizJHKs) built from Dark Energy Camera (DECam) and Visible and Infrared Survey Telescope for Astronomy (VISTA) data. The DES Deep Fields comprise 11 fields (10 DES supernova fields plus COSMOS), with a total area of ∼30 sq. deg. in ugriz bands and reaching a maximum i-band depth of 26.75 (AB, 10σ, 2 arcsec). We present a catalogue for the DES 3-yr cosmology analysis of those four fields with full 8-band coverage, totalling 5.88 sq. deg. after masking. Numbering 2.8 million objects (1.6 million post-masking), our catalogue is drawn from images coadded to consistent depths of r = 25.7, i = 25, and z = 24.3 mag. We use a new model-fitting code, built upon established methods, to deblend sources and ensure consistent colours across the u-band to Ks-band wavelength range. We further detail the tight control we maintain over the point-spread function modelling required for the model fitting, astrometry and consistency of photometry between the four fields. The catalogue allows us to perform a careful star–galaxy separation and produces excellent photometric redshift performance (NMAD = 0.023 at i < 23). The Deep-Fields catalogue will be made available as part of the cosmology data products release, following the completion of the DES 3-yr weak lensing and galaxy clustering cosmology work.more » « less
- 
            ABSTRACT Covering $$\sim 5600\, \deg ^2$$ to rms sensitivities of ∼70−100 $$\mu$$Jy beam−1, the LOFAR Two-metre Sky Survey Data Release 2 (LoTSS-DR2) provides the largest low-frequency (∼150 MHz) radio catalogue to date, making it an excellent tool for large-area radio cosmology studies. In this work, we use LoTSS-DR2 sources to investigate the angular two-point correlation function of galaxies within the survey. We discuss systematics in the data and an improved methodology for generating random catalogues, compared to that used for LoTSS-DR1, before presenting the angular clustering for ∼900 000 sources ≥1.5 mJy and a peak signal-to-noise ≥ 7.5 across ∼80 per cent of the observed area. Using the clustering, we infer the bias assuming two evolutionary models. When fitting angular scales of $$0.5 \le \theta \lt 5{^\circ }$$, using a linear bias model, we find LoTSS-DR2 sources are biased tracers of the underlying matter, with a bias of $$b_{\rm C}= 2.14^{+0.22}_{-0.20}$$ (assuming constant bias) and $$b_{\rm E}(z=0)= 1.79^{+0.15}_{-0.14}$$ (for an evolving model, inversely proportional to the growth factor), corresponding to $$b_{\rm E}= 2.81^{+0.24}_{-0.22}$$ at the median redshift of our sample, assuming the LoTSS Deep Fields redshift distribution is representative of our data. This reduces to $$b_{\rm C}= 2.02^{+0.17}_{-0.16}$$ and $$b_{\rm E}(z=0)= 1.67^{+0.12}_{-0.12}$$ when allowing preferential redshift distributions from the Deep Fields to model our data. Whilst the clustering amplitude is slightly lower than LoTSS-DR1 (≥2 mJy), our study benefits from larger samples and improved redshift estimates.more » « less
- 
            ABSTRACT We perform an analysis of two-point galaxy clustering and galaxy bias using Subaru Hyper-Suprime Cam (HSC) data taken jointly by the Subaru Strategic Program and the University of Hawaii in the Cosmic Evolution Survey (COSMOS) field over an area of 1.8 sq deg. The depth of the data is similar to the ongoing Hawaii Two-0 (H20) optical galaxy survey, thus the results are indicative of future constraints from tenfold area. We measure the angular autopower spectra of the galaxy overdensity in three redshift bins, defined by dropouts from the g, r, and i bands, and compare them to the theoretical expectation from concordance cosmology with linear galaxy bias. We determine the redshift distribution of each bin using a standard template-based photometric redshift method, coupled with a self-organizing map to quantify colour space coverage. We also investigate sources of systematic errors to inform the methodology and requirements for H20. The linear galaxy bias fit results are $$b_{\mathrm{gal,g}} = 3.90 \pm 0.33 (\mathrm{stat}) \substack{ +0.64 \\ -0.24 } (\mathrm{sys})$$ at redshift z ≃ 3.7, $$b_{\mathrm{gal,r}} = 8.44 \pm 0.63 (\mathrm{stat}) \substack{ +1.42 \\ -0.72 } (\mathrm{sys})$$ at z ≃ 4.7, and $$b_{\mathrm{gal,i}} = 11.94 \pm 2.24 (\mathrm{stat}) \substack{ +1.82 \\ -1.27 } (\mathrm{sys})$$ at z ≃ 5.9.more » « less
- 
            Abstract We present a catalog of 1.4 million photometrically selected quasar candidates in the southern hemisphere over the ∼5000 deg2Dark Energy Survey (DES) wide survey area. We combine optical photometry from the DES second data release (DR2) with available near-infrared (NIR) and the all-sky unWISE mid-infrared photometry in the selection. We build models of quasars, galaxies, and stars with multivariate skew-tdistributions in the multidimensional space of relative fluxes as functions of redshift (or color for stars) and magnitude. Our selection algorithm assigns probabilities for quasars, galaxies, and stars and simultaneously calculates photometric redshifts (photo-z) for quasar and galaxy candidates. Benchmarking on spectroscopically confirmed objects, we successfully classify (with photometry) 94.7% of quasars, 99.3% of galaxies, and 96.3% of stars when all IR bands (NIRYJHKand WISE W1W2) are available. The classification and photo-zregression success rates decrease when fewer bands are available. Our quasar (galaxy) photo-zquality, defined as the fraction of objects with the difference between the photo-z zpand the spectroscopic redshiftzs, ∣Δz∣ ≡ ∣zs−zp∣/(1 +zs) ≤ 0.1, is 92.2% (98.1%) when all IR bands are available, decreasing to 72.2% (90.0%) using optical DES data only. Our photometric quasar catalog achieves an estimated completeness of 89% and purity of 79% atr< 21.5 (0.68 million quasar candidates), with reduced completeness and purity at 21.5 <r≲ 24. Among the 1.4 million quasar candidates, 87,857 have existing spectra, and 84,978 (96.7%) of them are spectroscopically confirmed quasars. Finally, we provide quasar, galaxy, and star probabilities for all (0.69 billion) photometric sources in the DES DR2 coadded photometric catalog.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    