skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mediated semi-quantum key distribution with improved efficiency
Abstract Mediated semi-quantum key distribution involves the use of two end-users who have very restricted, almost classical, capabilities, who wish to establish a shared secret key using the help of a fully-quantum server who may be adversarial. In this paper, we introduce a new mediated semi-quantum key distribution protocol, extending prior work, which has asymptotically perfect efficiency. Though this comes at the cost of decreased noise tolerance, our protocol is backwards compatible with prior work, so users may easily switch to the old (normally less efficient) protocol if the noise level is high enough to justify it. To prove security, we show an interesting reduction from the mediated semi-quantum scenario to a fully-quantum entanglement based protocol which may be useful when proving the security of other multi-user quantum key distribution protocols.  more » « less
Award ID(s):
1812070
PAR ID:
10391893
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Quantum Science and Technology
Volume:
7
Issue:
3
ISSN:
2058-9565
Page Range / eLocation ID:
035019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Semi-quantum cryptography involves at least one user who is semi-quantum or ``classical'' in nature. Such a user can only interact with the quantum channel in a very restricted way. Many semi-quantum key distribution protocols have been developed, some with rigorous proofs of security. Here we show for the first time that quantum random number generation is possible in the semi-quantum setting. We also develop a rigorous proof of security, deriving a bound on the random bit generation rate of the protocol as a function of noise in the channel. Our protocol and proof may be broadly applicable to other quantum and semi-quantum cryptographic scenarios where users are limited in their capabilities. 
    more » « less
  2. Quantum key distribution, which allows two distant parties to share an unconditionally secure cryptographic key, promises to play an important role in the future of communication. For this reason such technique has attracted many theoretical and experimental efforts, thus becoming one of the most prominent quantum technologies of the last decades. The security of the key relies on quantum mechanics and therefore requires the users to be capable of performing quantum operations, such as state preparation or measurements in multiple bases. A natural question is whether and to what extent these requirements can be relaxed and the quantum capabilities of the users reduced. Here we demonstrate a novel quantum key distribution scheme, where users are fully classical. In our protocol, the quantum operations are performed by an untrusted third party acting as a server, which gives the users access to a superimposed single photon, and the key exchange is achieved via interaction-free measurements on the shared state. We also provide a full security proof of the protocol by computing the secret key rate in the realistic scenario of finite-resources, as well as practical experimental conditions of imperfect photon source and detectors. Our approach deepens the understanding of the fundamental principles underlying quantum key distribution and, at the same time, opens up new interesting possibilities for quantum cryptography networks 
    more » « less
  3. Abstract Two‐way quantum key distribution (QKD) protocols utilize bi‐directional quantum communication to establish a shared secret key. Due to the increased attack surface, security analyses remain challenging. Here a high‐dimensional variant of the Ping Pong protocol is investigated and an information theoretic security analysis in the finite‐key setting is performed. The main contribution in this work is to show a new proof methodology for two‐way quantum key distribution protocols based on the quantum sampling framework of Bouman and Fehr introduced in 2010 and also sampling‐based entropic uncertainty relations introduced by the authors in 2019. The Ping Pong protocol is only investigated here, but these methods may be broadly applicable to other QKD protocols, especially those relying on two‐way channels. Along the way, some fascinating benefits to high‐dimensional quantum states applied to two‐way quantum communication are also showed. 
    more » « less
  4. Abstract Quantum Key Distribution allows two parties to establish a secret key that is secure against computationally unbounded adversaries. To extend the distance between parties, quantum networks are vital. Typically, security in such scenarios assumes the absolute worst case: namely, an adversary has complete control over all repeaters and fiber links in a network and is able to replace them with perfect devices, thus allowing her to hide her attack within the expected natural noise. In a large-scale network, however, such a powerful attack may be infeasible. In this paper, we analyze the case where the adversary can only corrupt a subset of the repeater network connecting Alice and Bob, while some portion of the network near Alice and Bob may be considered safe from attack (though still noisy). We derive a rigorous finite key proof of security assuming this attack model, and show that improved performance and noise tolerances are possible. Our proof methods may be useful to other researchers investigating partially corrupted quantum networks, and our main result may be beneficial to future network operators. 
    more » « less
  5. Federated learning (FL) is an increasingly popular approach for machine learning (ML) when the training dataset is highly distributed. Clients perform local training on their datasets and the updates are then aggregated into the global model. Existing protocols for aggregation are either inefficient or don’t consider the case of malicious actors in the system. This is a major barrier to making FL an ideal solution for privacy-sensitive ML applications. In this talk, I will present ELSA, a secure aggregation protocol for FL that breaks this barrier - it is efficient and addresses the existence of malicious actors (clients + servers) at the core of its design. Similar to prior work Prio and Prio+, ELSA provides a novel secure aggregation protocol built out of distributed trust across two servers that keeps individual client updates private as long as one server is honest, defends against malicious clients, and is efficient end-to-end. Compared to prior works, the distinguishing theme in ELSA is that instead of the servers generating cryptographic correlations interactively, the clients act as untrusted dealers of these correlations without compromising the protocol’s security. This leads to a much faster protocol while also achieving stronger security at that efficiency compared to prior work. We introduce new techniques that retain privacy even when a server is malicious at a small added cost of 7-25% in runtime with a negligible increase in communication over the case of a semi-honest server. ELSA improves end-to-end runtime over prior work with similar security guarantees by big margins - single-aggregator RoFL by up to 305x (for the models we consider), and distributed-trust Prio by up to 8x (with up to 16x faster server-side protocol). Additionally, ELSA can be run in a bandwidth-saver mode for clients who are geographically bandwidth-constrained - an important property that is missing from prior works. 
    more » « less