skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Augmenting Pathologists with NaviPath: Design and Evaluation of a Human-AI Collaborative Navigation System
Artificial Intelligence (AI) brings advancements to support pathologists in navigating high-resolution tumor images to search for pathology patterns of interest. However, existing AI-assisted tools have not realized the promised potential due to a lack of insight into pathology and HCI considerations for pathologists’ navigation workflows in practice. We first conducted a formative study with six medical professionals in pathology to capture their navigation strategies. By incorporating our observations along with the pathologists’ domain knowledge, we designed NaviPath — a human-AI collaborative navigation system. An evaluation study with 15 medical professionals in pathology indicated that: (i) compared to the manual navigation, participants saw more than twice the number of pathological patterns in unit time with NaviPath, and (ii) participants achieved higher precision and recall against the AI and the manual navigation on average. Further qualitative analysis revealed that participants’ navigation was more consistent with NaviPath, which can improve the examination quality.  more » « less
Award ID(s):
2047297
PAR ID:
10391896
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The ACM CHI Conference on Human Factors in Computing Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent developments in AI have provided assisting tools to support pathologists’ diagnoses. However, it remains challenging to incorporate such tools into pathologists’ practice; one main concern is AI’s insufficient workflow integration with medical decisions. We observed pathologists’ examination and discovered that the main hindering factor to integrate AI is its incompatibility with pathologists’ workflow. To bridge the gap between pathologists and AI, we developed a human-AI collaborative diagnosis tool — xPath — that shares a similar examination process to that of pathologists, which can improve AI’s integration into their routine examination. The viability of xPath  is confirmed by a technical evaluation and work sessions with twelve medical professionals in pathology. This work identifies and addresses the challenge of incorporating AI models into pathology, which can offer first-hand knowledge about how HCI researchers can work with medical professionals side-by-side to bring technological advances to medical tasks towards practical applications. 
    more » « less
  2. Digital pathology has transformed the traditional pathology practice of analyzing tissue under a microscope into a computer vision workflow. Whole-slide imaging allows pathologists to view and analyze microscopic images on a computer monitor, enabling computational pathology. By leveraging artificial intelligence (AI) and machine learning (ML), computational pathology has emerged as a promising field in recent years. Recently, task-specific AI/ML (eg, convolutional neural networks) has risen to the forefront, achieving above-human performance in many image-processing and computer vision tasks. The performance of task-specific AI/ML models depends on the availability of many annotated training datasets, which presents a rate-limiting factor for AI/ML development in pathology. Task-specific AI/ML models cannot benefit from multimodal data and lack generalization, eg, the AI models often struggle to generalize to new datasets or unseen variations in image acquisition, staining techniques, or tissue types. The 2020s are witnessing the rise of foundation models and generative AI. A foundation model is a large AI model trained using sizable data, which is later adapted (or fine-tuned) to perform different tasks using a modest amount of task-specific annotated data. These AI models provide in-context learning, can self-correct mistakes, and promptly adjust to user feedback. In this review, we provide a brief overview of recent advances in computational pathology enabled by task-specific AI, their challenges and limitations, and then introduce various foundation models. We propose to create a pathology-specific generative AI based on multimodal foundation models and present its potentially transformative role in digital pathology. We describe different use cases, delineating how it could serve as an expert companion of pathologists and help them efficiently and objectively perform routine laboratory tasks, including quantifying image analysis, generating pathology reports, diagnosis, and prognosis. We also outline the potential role that foundation models and generative AI can play in standardizing the pathology laboratory workflow, education, and training. 
    more » « less
  3. Mahmoud, Ali B. (Ed.)
    Billions of dollars are being invested into developing medical artificial intelligence (AI) systems and yet public opinion of AI in the medical field seems to be mixed. Although high expectations for the future of medical AI do exist in the American public, anxiety and uncertainty about what it can do and how it works is widespread. Continuing evaluation of public opinion on AI in healthcare is necessary to ensure alignment between patient attitudes and the technologies adopted. We conducted a representative-sample survey (total N = 203) to measure the trust of the American public towards medical AI. Primarily, we contrasted preferences for AI and human professionals to be medical decision-makers. Additionally, we measured expectations for the impact and use of medical AI in the future. We present four noteworthy results: (1) The general public strongly prefers human medical professionals make medical decisions, while at the same time believing they are more likely to make culturally biased decisions than AI. (2) The general public is more comfortable with a human reading their medical records than an AI, both now and “100 years from now.” (3) The general public is nearly evenly split between those who would trust their own doctor to use AI and those who would not. (4) Respondents expect AI will improve medical treatment but more so in the distant future than immediately. 
    more » « less
  4. Abstract In recent years, technological advances in tissue preparation, high‐throughput volumetric microscopy, and computational infrastructure have enabled rapid developments in nondestructive 3D pathology, in which high‐resolution histologic datasets are obtained from thick tissue specimens, such as whole biopsies, without the need for physical sectioning onto glass slides. While 3D pathology generates massive datasets that are attractive for automated computational analysis, there is also a desire to use 3D pathology to improve the visual assessment of tissue histology. In this perspective, we discuss and provide examples of potential advantages of 3D pathology for the visual assessment of clinical specimens and the challenges of dealing with large 3D datasets (of individual or multiple specimens) that pathologists have not been trained to interpret. We discuss the need for artificial intelligence triaging algorithms and explainable analysis methods to assist pathologists or other domain experts in the interpretation of these novel, often complex, large datasets. 
    more » « less
  5. Abstract Mitosis is a critical criterion for meningioma grading. However, pathologists’ assessment of mitoses is subject to significant inter-observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists’ mitosis assessment. The strategy has two components: (1) A depth-first search algorithm that quantifies the mathematically maximum mitotic count in 10 consecutive high-power fields, which can enhance the preciseness, especially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists to detect mitoses under each high-power field, which can mitigate subjective random errors in mitosis detection originating from individual detection errors. By depth-first search algorithm (1) , we analyzed 19 meningioma slides and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This improvement is attributed to the algorithm’s ability to quantify the mitotic count more comprehensively compared to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member of the group annotated a set of 48 high-power field images for mitotic figures independently. We report that groups with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management. 
    more » « less