Direct numerical simulations (DNS) are performed to investigate the spatial evolution of flat-plate zero-pressure-gradient turbulent boundary layers over long streamwise domains ( ${>}300\delta _i$ , with $\delta _i$ the inflow boundary-layer thickness) at three different Mach numbers, $2.5$ , $4.9$ and $10.9$ , with the surface temperatures ranging from quasiadiabatic to highly cooled conditions. The settlement of turbulence statistics into a fully developed equilibrium state of the turbulent boundary layer has been carefully monitored, either based on the satisfaction of the von Kármán integral equation or by comparing runs with different inflow turbulence generation techniques. The generated DNS database is used to characterize the streamwise evolution of multiple important variables in the high-Mach-number, cold-wall regime, including the skin friction, the Reynolds analogy factor, the shape factor, the Reynolds stresses, and the fluctuating wall quantities. The data confirm the validity of many classic and newer compressibility transformations at moderately high Reynolds numbers (up to friction Reynolds number $Re_\tau \approx 1200$ ) and show that, with proper scaling, the sizes of the near-wall streaks and superstructures are insensitive to the Mach number and wall cooling conditions. The strong wall cooling in the hypersonic cold-wall case is found to cause a significant increase in the size of the near-wall turbulence eddies (relative to the boundary-layer thickness), which leads to a reduced-scale separation between the large and small turbulence scales, and in turn to a lack of an outer peak in the spanwise spectra of the streamwise velocity in the logarithmic region.
more »
« less
A Conservation-Based Transitional Boundary Layer Model
Abstract A simple, flow-physics-based model of flat-plate, transitional boundary layer skin friction and heat transfer is presented. The model is based on the assumption of negligible time-, spanwise-, and streamwise-average wall-normal velocity at the top of the boundary layer. This results in a threefold increase in boundary layer thickness over the transition region. This simple velocity assumption and its boundary-layer growth implications seem to be reasonably consistent with more sophisticated (direct numerical simulation (DNS)) modeling simulations. Only two modeling parameters need to be assumed, the Reynolds numbers at the onset and at the completion of transition, for which there is guidance based on freestream turbulence intensity for smooth plates. Several experimental datasets for air are modeled. New criteria are proposed to help define the onset and completion of transition: zero net vertical (wall-normal) velocity or mass flux (integrated in time and space, spanwise and streamwise) at the top of the boundary layer, and tripling of boundary layer thickness. Also presented is a minor improvement to a previously published unheated starting length factor for flat-plate laminar boundary layers with uniform wall heat flux.
more »
« less
- Award ID(s):
- 2152233
- PAR ID:
- 10391897
- Date Published:
- Journal Name:
- Journal of Heat Transfer
- Volume:
- 144
- Issue:
- 10
- ISSN:
- 0022-1481
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent studies reveal that at large friction Reynolds number delta^+ the outer, inertially-dominated region of the turbulent boundary layer is composed of large scale zones of uniform momentum segregated by narrow fissures of concentrated vorticity. Experiments show that, when scaled by the boundary layer thickness, the fissure thickness is O(1/sqrt{delta^+}), while the dimensional jump in streamwise velocity across each fissure scales in proportion to the friction velocity u_tau. A simple model that exploits these essential elements of the turbulent boundary layer structure at large delta^+ is developed. First, a master wall-normal profile of streamwise velocity is constructed by placing a discrete number of fissures across the boundary layer. The number of fissures and their wall-normal locations follow scalings informed by analysis of the mean momentum equation. The fissures are then randomly displaced in the wall-normal direction, exchanging momentum as they move, to create an instantaneous velocity profile. This process is repeated to generate ensembles of streamwise velocity profiles from which statistical moments are computed. The modelled statistical moments are shown to agree remarkably well with those acquired from direct numerical simulations of turbulent channel flow at large delta^+. In particular, the model robustly reproduces the empirically observed sub-Gaussian behaviour for the skewness and kurtosis profiles over a large range of input parameters.more » « less
-
A new Anechoic Wall Jet Wind Tunnel was built at Virginia Tech. A detailed design based on the old wall jet tunnel was done to improve the quality of the resultant flow. Aerodynamic and acoustic calibrations were performed in order to understand properties and characteristics of the flow generated by this new facility which can be used for various aeroacoustic studies. Far-field acoustics were measured using half-inch B&K microphones in a streamwise array to characterize and reduce the background noise. Sound pressure levels were lower by 10 dB for frequencies up to 700Hz in comparison to the old facility. The turbulent surface pressure fluctuations of the wall-jet flow were studied using Sennheiser microphones placed along streamwise and spanwise locations to record surface pressure fluctuations. Comparison of the autocorrelation plotted for microphones along the same span indicate uniform flow features. A decay in the turbulence levels is observed along the downstream direction as expected. Aerodynamic calibrations included mean velocity measurements along different spanwise locations, wall-jet boundary layer profiles and streamwise cross-sections. Spanwise and cross-sectional velocity profiles show good uniformity of the flow. Detailed boundary layer analyses were performed with the parameters obtained from the experiments.more » « less
-
null (Ed.)Abstract Coherent structures are critical for controlling turbulent boundary layers due to their roles in momentum and heat transfer in the flow. Turbulent coherent structures can be detected by measuring wall shear stresses that are footprints of coherent structures. In this study, wall shear stress fluctuations were measured simultaneously in a zero pressure gradient turbulent boundary layer using two house-made wall shear stress probes aligned in the spanwise direction. The wall shear stress probe consisted of two hot-wires on the wall aligned in a V-shaped configuration for measuring streamwise and spanwise shear stresses, and their performance was validated in comparison with a direct numerical simulation result. Relationships between measured wall shear stress fluctuations and streamwise velocity fluctuations were analyzed using conditional sampling techniques. The peak detection method and the variable-interval time-averaging (VITA) method showed that quasi-streamwise vortices were inclined toward the streamwise direction. When events were simultaneously detected by the two probes, stronger fluctuations in streamwise velocity were detected, which suggests that stronger coherent structures were detected. In contrast to the former two methods, the hibernating event detection method detects events with lower wall shear stress fluctuations. The ensemble-averaged mean velocity profile of hibernating events was shifted upward compared to the law of the wall, which suggests low drag status of the coherent structures related with hibernating events. These methods suggest significant correlations between wall shear stress fluctuations and coherent structures, which could motivate flow control strategies to fully exploit these correlations.more » « less
-
A direct numerical simulation of incompressible channel flow at a friction Reynolds number (Reτ) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant k = 0.384 ± 0.004. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits k-1 dependence over a short range in wavenumber (k) . Further, consistent with previous experimental observations, when these spectra are multiplied by k (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the k-1 range.more » « less