skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessment of Cooperative Adaptive Cruise Control in Mixed Traffic on Arterial Roads
In this paper, we investigated the performance of cooperative adaptive cruise control (CACC) algorithms in mixed traffic environments featuring connected automated vehicles (CAVs) and unconnected vehicles. For CAVs, we tested the recently proposed linear feedback control approach (Linear- CACCu) and adaptive model predictive control approach (A- MPC-CACCu) which have been tailored to extend CACC to mixed traffic environments. In contrast to most literature where CACC design and evaluation are performed on freeways, we focused on urban arterial roads using the CACC Field Operation Test Dataset from the Netherlands. We compared the performances of Linear-CACCu and A-MPC-CACCu to regular adaptive cruise control (ACC), where automated vehicles do not rely on connectivity, as well as human drivers. Performance comparison was done in terms of ego vehicle’s spacing error, acceleration, and energy consumption which relate to safety, driving comfort, and energy efficiency, respectively. Simulation results showed that CACCu algorithms significantly outper- formed the ACC and human drivers in these metrics. Moreover, we found that the fluctuations of the lead vehicle’s behavior due to changes in traffic signal phase have a significant impact on which CACCu is optimal (i.e., A-MPC-CACCu or Linear- CACCu). Thus, the CACC mode could be switched based on the expectation of traffic signal phase changes to assure better performance.  more » « less
Award ID(s):
2009342
PAR ID:
10392034
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 IEEE Intelligent Transportation Systems Conference (ITSC)
Page Range / eLocation ID:
3851 to 3856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zonta, Daniele; Su, Zhongqing; Glisic, Branko (Ed.)
    With the rapid development of smart cities, interest in vehicle automation continues growing. Autonomous vehicles are becoming more and more popular among people and are considered to be the future of ground transportation. Autonomous vehicles, either with adaptive cruise control (ACC) or cooperative adaptive cruise control (CACC), provide many possibilities for smart transportation in a smart city. However, traditional vehicles and autonomous vehicles will have to share the same road systems until autonomous vehicles fully penetrate the market over the next few decades, which leads to conflicts because of the inconsistency of human drivers. In this paper, the performance of autonomous vehicles with ACC/CACC and traditional vehicles in mixed driver environments, at a signalized intersection, were evaluated using the micro-simulator VISSIM. In the simulation, the vehicles controlled by the ACC/CACC and Wiedemann 99 (W99) model represent the behavior of autonomous vehicles and human driver vehicles, respectively. For these two different driver environments, four different transport modes were comprehensively investigated: full light duty cars, full trucks, full motorcycles, and mixed conditions. In addition, ten different seed numbers were applied to each model to avoid coincidence. To evaluate the driving behavior of the human drivers and autonomous vehicles, this paper will compare the total number of stops, average velocity, and vehicle delay of each model at the signalized traffic intersection based on a real road intersection in Minnesota. 
    more » « less
  2. Cooperative adaptive cruise control (CACC) is one of the main features of connected and autonomous vehicles (CAVs), which uses connectivity to improve the efficiency of adaptive cruise control (ACC). The addition of reliable communication systems to ACC reduces fuel consumption, maximizes road capacity, and ensures traffic safety. However, the performance, stability, and safety of CACC could be affected by the transmission of outdated data caused by communication delays. This paper proposes a Lyapunov-based nonlinear controller to mitigate the impact of time-varying delays in the communication channel of CACC. This paper uses Lyapunov–Krasovskii functionals in the stability analysis to ensure semi-global uniformly ultimately bounded tracking. The efficaciousness of the proposed CACC algorithm is demonstrated in simulation and through experimental implementation. 
    more » « less
  3. The Intelligent Driver Model (IDM) is one of the widely used car-following models to represent human drivers in mixed traffic simulations. However, the standard IDM performs too well in energy efficiency and comfort (acceleration) compared with real-world human drivers. In addition, many studies assessed the performance of automated vehicles interacting with human-driven vehicles (HVs) in mixed traffic where IDM serves as HVs based on the assumption that the IDM represents an intelligent human driver that performs not better than automated vehicles (AVs). When a commercially available control system of AVs, Adaptive Cruise Control (ACC), is compared with the standard IDM, it is found that the standard IDM generally outperforms ACC in fuel efficiency and comfort, which is not logical in an evaluation of any advanced control logic with mixed traffic. To ensure the IDM reasonably mimics human drivers, a dynamic safe time headway concept is proposed and evaluated. A real-world NGSIM data set is utilized as the human drivers for simulation-based comparisons. The results indicate that the performance of the IDM with dynamic time headway is much closer to human drivers and worse than the ACC system as expected. 
    more » « less
  4. Cooperative adaptive cruise control (CACC) is one of the popular connected and automated vehicle (CAV) applications for cooperative driving automation with combined connectivity and automation technologies to improve string stability. This study aimed to derive the string stability conditions of a CACC controller and analyze the impacts of CACC on string stability for both a fleet of homogeneous CAVs and for heterogeneous traffic with human-driven vehicles (HDVs), connected vehicles (CVs) with connectivity technologies only, and autonomous vehicles (AVs) with automation technologies only. We mathematically analyzed the impact of CACC on string stability for both homogeneous and heterogeneous traffic flow. We adopted parameters from literature for HDVs, CVs, and AVs for the heterogeneous traffic case. We found there was a minimum constant time headway required for each parameter design to ensure stability in homogeneous CACC traffic. In addition, the constant time headway and the length of control time interval had positive correlation with stability, but the control parameter had a negative correlation with stability. The numerical analysis also showed that CACC vehicles could maintain string stability better than CVs and AVs under low HDV market penetration rates for the mixed traffic case. 
    more » « less
  5. null (Ed.)
    This study focuses on how to improve the merge control prior to lane reduction points due to either accidents or constructions. A Cooperative Car-following and Merging (CCM) control strategy is proposed considering the coexistence of Automated Vehicles (AVs) and Human-4 Driven Vehicles (HDVs). CCM introduces a modified/generalized Cooperative Adaptive Cruise Control (CACC) for vehicle longitudinal control prior to lane reduction points. It also takes courtesy into account to ensure that AVs behave responsibly and ethically. CCM is evaluated using microscopic traffic simulation and compared with no control and CACC merge strategies. The results show that CCM consistently generates the lowest delays and highest throughputs approaching the theoretical capacity. Its safety benefits are also found to be significant based on vehicle trajectories and density maps. AVs in this study do not need to be fully automated and can be at Level-1 automation. CCM only requires automated longitudinal control such as Adaptive Cruise Control (ACC) and information sharing among vehicles, and ACC is already commercially available on many new vehicles. Also, it does not need 100% ACC penetration, presenting itself as a promising and practical solution for improving traffic operations in lane reduction transition areas such as highway work zones. 
    more » « less