skip to main content


This content will become publicly available on May 1, 2025

Title: A Nonlinear Control Design for Cooperative Adaptive Cruise Control with Time-Varying Communication Delay

Cooperative adaptive cruise control (CACC) is one of the main features of connected and autonomous vehicles (CAVs), which uses connectivity to improve the efficiency of adaptive cruise control (ACC). The addition of reliable communication systems to ACC reduces fuel consumption, maximizes road capacity, and ensures traffic safety. However, the performance, stability, and safety of CACC could be affected by the transmission of outdated data caused by communication delays. This paper proposes a Lyapunov-based nonlinear controller to mitigate the impact of time-varying delays in the communication channel of CACC. This paper uses Lyapunov–Krasovskii functionals in the stability analysis to ensure semi-global uniformly ultimately bounded tracking. The efficaciousness of the proposed CACC algorithm is demonstrated in simulation and through experimental implementation.

 
more » « less
Award ID(s):
2241718
NSF-PAR ID:
10506607
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Electronics
Volume:
13
Issue:
10
ISSN:
2079-9292
Page Range / eLocation ID:
1875
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study focuses on how to improve the merge control prior to lane reduction points due to either accidents or constructions. A Cooperative Car-following and Merging (CCM) control strategy is proposed considering the coexistence of Automated Vehicles (AVs) and Human-4 Driven Vehicles (HDVs). CCM introduces a modified/generalized Cooperative Adaptive Cruise Control (CACC) for vehicle longitudinal control prior to lane reduction points. It also takes courtesy into account to ensure that AVs behave responsibly and ethically. CCM is evaluated using microscopic traffic simulation and compared with no control and CACC merge strategies. The results show that CCM consistently generates the lowest delays and highest throughputs approaching the theoretical capacity. Its safety benefits are also found to be significant based on vehicle trajectories and density maps. AVs in this study do not need to be fully automated and can be at Level-1 automation. CCM only requires automated longitudinal control such as Adaptive Cruise Control (ACC) and information sharing among vehicles, and ACC is already commercially available on many new vehicles. Also, it does not need 100% ACC penetration, presenting itself as a promising and practical solution for improving traffic operations in lane reduction transition areas such as highway work zones. 
    more » « less
  2. In this paper, we investigated the performance of cooperative adaptive cruise control (CACC) algorithms in mixed traffic environments featuring connected automated vehicles (CAVs) and unconnected vehicles. For CAVs, we tested the recently proposed linear feedback control approach (Linear- CACCu) and adaptive model predictive control approach (A- MPC-CACCu) which have been tailored to extend CACC to mixed traffic environments. In contrast to most literature where CACC design and evaluation are performed on freeways, we focused on urban arterial roads using the CACC Field Operation Test Dataset from the Netherlands. We compared the performances of Linear-CACCu and A-MPC-CACCu to regular adaptive cruise control (ACC), where automated vehicles do not rely on connectivity, as well as human drivers. Performance comparison was done in terms of ego vehicle’s spacing error, acceleration, and energy consumption which relate to safety, driving comfort, and energy efficiency, respectively. Simulation results showed that CACCu algorithms significantly outper- formed the ACC and human drivers in these metrics. Moreover, we found that the fluctuations of the lead vehicle’s behavior due to changes in traffic signal phase have a significant impact on which CACCu is optimal (i.e., A-MPC-CACCu or Linear- CACCu). Thus, the CACC mode could be switched based on the expectation of traffic signal phase changes to assure better performance. 
    more » « less
  3. Real-time control of a fleet of Connected and Automated Vehicles (CAV) for Cooperative Adaptive Cruise Control (CACC) is a challenging problem concerning time delays (from sensing, communication, and computation) and actuator lag. This paper proposes a real-time predictive distributed CACC control framework that addresses time delays and actuator lag issues in the real-time networked control systems. We first formulate a Kalman Filter-based real-time current driving state prediction model to provide more accurate initial conditions for the distributed CACC controller by compensating time delays using sensing data from multi-rate onboard sensors (e.g., Radar, GPS, wheel speed, and accelerometer), and status-sharing and intent-sharing data in BSM via V2V communication. We solve the prediction model using a sequential Kalman Filter update process for multi-rate sensing data to improve computational efficiency. We propose a real-time distributed MPC-based CACC controller with actuator lag and intent-sharing information for each CAV with the delay-compensated predicted current driving states as initial conditions. We implement the real-time predictive distributed CACC control algorithms and conduct numerical analyses to demonstrate the benefits of intent-sharing-based distributed computing, delay compensation, and actuator lag consideration on string stability under various traffic dynamics. 
    more » « less
  4. null (Ed.)
    Autonomous vehicle-following systems, including Adaptive Cruise Control (ACC) and Cooperative Adaptive Cruise Control (CACC), improve safety, efficiency, and string stability for a vehicle (the ego vehicle) following its leading vehicle. The ego vehicle senses or receives information, such as the position, velocity, acceleration, or even intention, of the leading vehicle and controls its own behavior. However, it has been shown that sensors and wireless channels are vulnerable to security attacks, and attackers can modify data sensed from sensors or received from other vehicles. To address this problem, in this paper, we design three types of stealthy attacks on ACC or CACC inputs, where the stealthy attacks can deceive a rule-based detection approach and impede system properties (collision-freeness and vehicle-following distance). We then develop two deep-learning models, a predictor-based model and an encoder-decoder-based model to detect the attacks, where the two models do not need attacker models for training. The experimental results demonstrate the respective strengths of different models and lead to a methodology for the design of learning-based intrusion detection approaches. 
    more » « less
  5. The safety impacts of cooperative platooning in mixed traffic consisting of human-driven, con-nected, and connected-automated vehicles were evaluated. The cooperative platooning in mixed traffic control algorithm evaluated is the Cooperative Adaptive Cruise Control with unconnected Vehicle (CACCu) with an unconnected vehicle. Its safety and string stability were evaluated using a high-fidelity simulation based on real-world vehicle trajectories. An Adaptive Cruise Control (ACC) algorithm was selected for comparison purposes. The results indicate that the cooperative platooning in mixed traffic control algorithm (CACCu) maintains string stability and performs more safely than the ACC. 
    more » « less