Abstract Relativistic magnetized jets, such as those from AGN, GRBs, and XRBs, are susceptible to current- and pressure-driven MHD instabilities that can lead to particle acceleration and nonthermal radiation. Here, we investigate the development of these instabilities through 3D kinetic simulations of cylindrically symmetric equilibria involving toroidal magnetic fields with electron–positron pair plasma. Generalizing recent treatments by Alves et al. and Davelaar et al., we consider a range of initial structures in which the force due to toroidal magnetic field is balanced by a combination of forces due to axial magnetic field and gas pressure. We argue that the particle energy limit identified by Alves et al. is due to the finite duration of the fast magnetic dissipation phase. We find a rather minor role of electric fields parallel to the local magnetic fields in particle acceleration. In all investigated cases, a kink mode arises in the central core region with a growth timescale consistent with the predictions of linearized MHD models. In the case of a gas-pressure-balanced (Z-pinch) profile, we identify a weak local pinch mode well outside the jet core. We argue that pressure-driven modes are important for relativistic jets, in regions where sufficient gas pressure is produced by other dissipation mechanisms.
more »
« less
The Scott conjecture for large Coulomb systems: a review
Abstract We review some older and more recent results concerning the energy and particle distribution in ground states of heavy Coulomb systems. The reviewed results are asymptotic in nature: they describe properties of many-particle systems in the limit of a large number of particles. Particular emphasis is put on models that take relativistic kinematics into account. While non-relativistic models are typically rather well understood, this is generally not the case for relativistic ones and leads to a variety of open questions.
more »
« less
- Award ID(s):
- 1954995
- PAR ID:
- 10392049
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Letters in Mathematical Physics
- Volume:
- 113
- Issue:
- 1
- ISSN:
- 0377-9017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Neutron stars may experience differential rotation on short, dynamical timescales following extreme astrophysical events like binary neutron star mergers. In this work, the masses and radii of differentially rotating neutron star models are computed. We employ a set of equations of states for dense hypernuclear and ‐admixed‐hypernuclear matter obtained within the framework of CDF theory in the relativistic Hartree‐Fock (RHF) approximation. Results are shown for varying meson‐ couplings, or equivalently the ‐potential in nuclear matter. A comparison of our results with those obtained for nonrotating stars shows that the maximum mass difference between differentially rotating and static stars is independent of the underlying particle composition of the star. We further find that the decrease in the radii and increase in the maximum masses of stellar models when ‐isobars are added to hyperonuclear matter (as initially observed for static and uniformly rotating stars) persist also in the case of differentially rotating neutron stars.more » « less
-
ABSTRACT Recently, particle-in-cell (PIC) simulations have shown that relativistic turbulence in collisionless plasmas can result in an equilibrium particle distribution function where turbulent heating is balanced by radiative cooling of electrons. Strongly magnetized plasmas are characterized by higher energy peaks and broader particle distributions. In relativistically moving astrophysical jets, it is believed that the flow is launched Poynting flux dominated and that the resulting magnetic instabilities may create a turbulent environment inside the jet, i.e. the regime of relativistic turbulence. In this paper, we extend previous PIC simulation results to larger values of plasma magnetization by linearly extrapolating the diffusion and advection coefficients relevant for the turbulent plasmas under consideration. We use these results to build a single-zone turbulent jet model that is based on the global parameters of the blazar emission region, and consistently calculate the particle distribution and the resulting emission spectra. We then test our model by comparing its predictions with the broad-band quiescent emission spectra of a dozen blazars. Our results show good agreement with observations of low synchrotron peaked (LSP) sources and find that LSPs are moderately Poynting flux dominated with magnetization 1 ≲ σ ≲ 5, have bulk Lorentz factor Γj ∼ 10–30, and that the turbulent region is located at the edge, or just beyond the broad-line region (BLR). The turbulence is found to be driven at an area comparable to the jet cross-section.more » « less
-
Abstract Very long baseline interferometry observations reveal that relativistic jets like the one in M87 have a limb-brightened, double-edged structure. Analytic and numerical models struggle to reproduce this limb-brightening. We propose a model in which we invoke anisotropy in the distribution function of synchrotron-emitting nonthermal electrons such that electron velocities are preferentially directed parallel to magnetic field lines, as suggested by recent particle-in-cell simulations of electron acceleration and the effects of synchrotron cooling. We assume that the energy injected into nonthermal electrons is proportional to the jet Poynting flux, and we account for synchrotron cooling via a broken power-law energy distribution. We implement our emission model in both general relativistic magnetohydrodynamic (GRMHD) simulations and axisymmetric force-free electrodynamic (GRFFE) jet models and produce simulated jet images at multiple scales and frequencies using polarized general relativistic radiative transfer. We find that the synchrotron emission is concentrated parallel to the local helical magnetic field and that this feature produces limb-brightened jet images on scales ranging from tens of microarcseconds to hundreds of milliarcseconds in M87. We present theoretical predictions for horizon-scale M87 jet images at 230 and 345 GHz that can be tested with next-generation instruments. Due to the scale-invariance of the GRMHD and GRFFE models, our emission prescription can be applied to other targets and serve as a foundation for a unified description of limb-brightened synchrotron images of extragalactic jets.more » « less
-
ABSTRACT High-energy astrophysical systems frequently contain collision-less relativistic plasmas that are heated by turbulent cascades and cooled by emission of radiation. Understanding the nature of this radiative turbulence is a frontier of extreme plasma astrophysics. In this paper, we use particle-in-cell simulations to study the effects of external inverse Compton radiation on turbulence driven in an optically thin, relativistic pair plasma. We focus on the statistical steady state (where injected energy is balanced by radiated energy) and perform a parameter scan spanning from low magnetization to high magnetization (0.04 ≲ σ ≲ 11). We demonstrate that the global particle energy distributions are quasi-thermal in all simulations, with only a modest population of non-thermal energetic particles (extending the tail by a factor of ∼2). This indicates that non-thermal particle acceleration (observed in similar non-radiative simulations) is quenched by strong radiative cooling. The quasi-thermal energy distributions are well fit by analytic models in which stochastic particle acceleration (due to, e.g. second-order Fermi mechanism or gyroresonant interactions) is balanced by the radiation reaction force. Despite the efficient thermalization of the plasma, non-thermal energetic particles do make a conspicuous appearance in the anisotropy of the global momentum distribution as highly variable, intermittent beams (for high magnetization cases). The beamed high-energy particles are spatially coincident with intermittent current sheets, suggesting that localized magnetic reconnection may be a mechanism for kinetic beaming. This beaming phenomenon may explain rapid flares observed in various astrophysical systems (such as blazar jets, the Crab nebula, and Sagittarius A*).more » « less