Sleep is a fundamental feature of life for virtually all multicellular animals, but many questions remain about how sleep is regulated by circadian rhythms, homeostatic sleep drive that builds up with wakefulness, and modifying factors such as hunger or social interactions, as well as about the biological functions of sleep. Substantial headway has been made in the study of both circadian rhythms and sleep in the fruit flyDrosophila melanogaster, much of it through studies of individual fly activity usingDrosophilaactivity monitors (DAMs). Here, we describe approaches for the activation of specific neurons of interest using optogenetics (involving genetic modifications that allow for light-based neuronal activation) and thermogenetics (involving genetic modifications that allow for temperature-based neuronal activation) so that researchers can evaluate the roles of those neurons in controlling rest and activity behavior. In this protocol, we describe how to set up a rig for simultaneous optogenetic or thermogenetic stimulation and activity monitoring for analysis of sleep and circadian rhythms inDrosophila, how to raise appropriate flies, and how to perform the experiment. This protocol will allow researchers to assess the causative role in the regulation of sleep and activity rhythms of any genetically tractable subset of cells.
more »
« less
Base Modifications of Nucleosides via the Use of Peptide‐Coupling Agents, and Beyond
Abstract Several naturally occurring purine and pyrimidine nucleosides contain an amide linkage as part of the heterocyclic aglycone. Enolization of the amide and conversion to leaving groups at the amide carbon atom permits base modification by addition‐elimination types of processes. Although a number of methods have been developed over the years for accomplishing such conversions, the present Personal Account describes efforts from the Lakshman laboratories. Facile activation of the amido groups in nucleobases can be achieved with peptide‐coupling agents. Subsequent reaction with nucleophiles then accomplishes the base modifications. In many cases, the activation and displacement steps can be done as two‐step, one‐pot processes, whereas in other cases, discrete storable activated nucleosides can be isolated for subsequent displacement reactions. Using such an approach a wide range of nucleoside base modifications is readily achievable. In many instances, mechanistic investigations have been conducted so as to understand the activation process.
more »
« less
- Award ID(s):
- 1953574
- PAR ID:
- 10392091
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- The Chemical Record
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1527-8999
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A mechanism of nucleoside triphosphorylation would have been critical in an evolving “RNA world” to provide high‐energy substrates for reactions such as RNA polymerization. However, synthetic approaches to produce ribonucleoside triphosphates (rNTPs) have suffered from conditions such as high temperatures or high pH that lead to increased RNA degradation, as well as substrate production that cannot sustain replication. Previous reports have demonstrated that cyclic trimetaphosphate (cTmp) can react with nucleosides to form rNTPs under prebiotically‐relevant conditions, but their reaction rates were unknown and the influence of reaction conditions not well‐characterized. Here we established a sensitive assay that allowed for the determination of second‐order rate constants for all four rNTPs, ranging from 1.7×10−6to 6.5×10−6 M−1 s−1. The ATP reaction shows a linear dependence on pH and Mg2+, and an enthalpy of activation of 88±4 kJ/mol. At millimolar nucleoside and cTmp concentrations, the rNTP production rate is sufficient to facilitate RNA synthesis by both T7 RNA polymerase and a polymerase ribozyme. We suggest that the optimized reaction of cTmp with nucleosides may provide a viable connection between prebiotic nucleotide synthesis and RNA replication.more » « less
-
Fast scan cyclic voltammetry (FSCV) is an analytical technique that was first developed over 30 years ago. Since then, it has been extensively used to detect dopamine using carbon fiber microelectrodes (CFMEs). More recently, electrode modifications and waveform refinement have enabled the detection of a wider variety of neurochemicals including nucleosides such as adenosine and guanosine, neurotransmitter metabolites of dopamine, and neuropeptides such as enkephalin. These alterations have facilitated the selectivity of certain biomolecules over others to enhance the measurement of the analyte of interest while excluding interferants. In this review, we detail these modifications and how specializing CFME sensors allows neuro-analytical researchers to develop tools to understand the neurochemistry of the brain in disease states and provide groundwork for translational work in clinical settings.more » « less
-
Abstract C‐aryl glycosyl compounds offer better in vivo stability relative toO‐ andN‐glycoside analogues.C‐aryl glycosides are extensively investigated as drug candidates and applied to chemical biology studies. Previously,C‐aryl glycosides were derived from lactones, glycals, glycosyl stannanes, and halides, via methods displaying various limitations with respect to the scope, functional‐group compatibility, and practicality. Challenges remain in the synthesis ofC‐aryl nucleosides and 2‐deoxysugars from easily accessible carbohydrate precursors. Herein, we report a cross‐coupling method to prepareC‐aryl and heteroaryl glycosides, including nucleosides and 2‐deoxysugars, from glycosyl esters and bromoarenes. Activation of the carbohydrate substrates leverages dihydropyridine (DHP) as an activating group followed by decarboxylation to generate a glycosyl radical via C−O bond homolysis. This strategy represents a new means to activate alcohols as a cross‐coupling partner. The convenient preparation of glycosyl esters and their stability exemplifies the potential of this method in medicinal chemistry.more » « less
-
Abstract Chemical modifications on RNA can regulate fundamental biological processes. Recent efforts have illuminated the chemical diversity of posttranscriptional (“epitranscriptomic”) modifications on eukaryotic messenger RNA and have begun to elucidate their biological roles. In this review, we discuss our current molecular understanding of epitranscriptomic RNA modifications and their effects on gene expression. In particular, we highlight the role of modifications in mediating RNA‐protein interactions, RNA structure, and RNA‐RNA base pairing, and how these macromolecular interactions control biological processes in the cell.more » « less
An official website of the United States government
