Scientific literature analysis needs fine-grained named entity recognition (NER) to provide a wide range of information for scientific discovery. For example, chemistry research needs to study dozens to hundreds of distinct, fine-grained entity types, making consistent and accurate annotation difficult even for crowds of domain experts. On the other hand, domain-specific ontologies and knowledge bases (KBs) can be easily accessed, constructed, or integrated, which makes distant supervision realistic for fine-grained chemistry NER. In distant supervision, training labels are generated by matching mentions in a document with the concepts in the knowledge bases (KBs). However, this kind of KB-matching suffers from two major challenges: incomplete annotation and noisy annotation. We propose ChemNER, an ontology-guided, distantly-supervised method for fine-grained chemistry NER to tackle these challenges. It leverages the chemistry type ontology structure to generate distant labels with novel methods of flexible KB-matching and ontology-guided multi-type disambiguation. It significantly improves the distant label generation for the subsequent sequence labeling model training. We also provide an expert-labeled, chemistry NER dataset with 62 fine-grained chemistry types (e.g., chemical compounds and chemical reactions). Experimental results show that ChemNER is highly effective, outperforming substantially the state-of-the-art NER methods (with .25 absolute F1 score improvement).
more »
« less
Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
We present a new scientific document similarity model based on matching fine-grained aspects of texts. To train our model, we exploit a naturally-occurring source of supervision: sentences in the full-text of papers that cite multiple papers together (co-citations). Such co-citations not only reflect close paper relatedness, but also provide textual descriptions of how the co-cited papers are related. This novel form of textual supervision is used for learning to match aspects across papers. We develop multi-vector representations where vectors correspond to sentence-level aspects of documents, and present two methods for aspect matching: (1) A fast method that only matches single aspects, and (2) a method that makes sparse multiple matches with an Optimal Transport mechanism that computes an Earth Mover’s Distance between aspects. Our approach improves performance on document similarity tasks in four datasets. Further, our fast single-match method achieves competitive results, paving the way for applying fine-grained similarity to large scientific corpora.
more »
« less
- Award ID(s):
- 1922090
- NSF-PAR ID:
- 10392124
- Date Published:
- Journal Name:
- Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
- Page Range / eLocation ID:
- 4453 to 4470
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Given a citation in the body of a research paper, cited text identification aims to find the sentences in the cited paper that are most relevant to the citing sentence. The task is fundamentally one of sentence matching, where affinity is often assessed by a cosine similarity between sentence embeddings. However, (a) sentences may not be well-represented by a single embedding because they contain multiple distinct semantic aspects, and (b) good matches may not require a strong match in all aspects. To overcome these limitations, we propose a simple and efficient unsupervised method for cited text identification that adapts an asymmetric similarity measure to allow partial matches of multiple aspects in both sentences. On the CL-SciSumm dataset we find that our method outperforms a baseline symmetric approach, and, surprisingly, also outperforms all supervised and unsupervised systems submitted to past editions of CL-SciSumm Shared Task 1a.more » « less
-
Proc. 2023 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (Ed.)Instead of relying on human-annotated training samples to build a classifier, weakly supervised scientific paper classification aims to classify papers only using category descriptions (e.g., category names, category-indicative keywords). Existing studies on weakly supervised paper classification are less concerned with two challenges: (1) Papers should be classified into not only coarse-grained research topics but also fine-grained themes, and potentially into multiple themes, given a large and fine-grained label space; and (2) full text should be utilized to complement the paper title and abstract for classification. Moreover, instead of viewing the entire paper as a long linear sequence, one should exploit the structural information such as citation links across papers and the hierarchy of sections and paragraphs in each paper. To tackle these challenges, in this study, we propose FuTex, a framework that uses the cross-paper network structure and the in-paper hierarchy structure to classify full-text scientific papers under weak supervision. A network-aware contrastive fine-tuning module and a hierarchyaware aggregation module are designed to leverage the two types of structural signals, respectively. Experiments on two benchmark datasets demonstrate that FuTex significantly outperforms competitive baselines and is on par with fully supervised classifiers that use 1,000 to 60,000 ground-truth training samples.more » « less
-
Proc. 2023 ACM Int. Conf. on Web Search and Data Mining (Ed.)Target-oriented opinion summarization is to profile a target by extracting user opinions from multiple related documents. Instead of simply mining opinion ratings on a target (e.g., a restaurant) or on multiple aspects (e.g., food, service) of a target, it is desirable to go deeper, to mine opinion on fine-grained sub-aspects (e.g., fish). However, it is expensive to obtain high-quality annotations at such fine-grained scale. This leads to our proposal of a new framework, FineSum, which advances the frontier of opinion analysis in three aspects: (1) minimal supervision, where no document-summary pairs are provided, only aspect names and a few aspect/sentiment keywords are available; (2) fine-grained opinion analysis, where sentiment analysis drills down to a specific subject or characteristic within each general aspect; and (3) phrase-based summarization, where short phrases are taken as basic units for summarization, and semantically coherent phrases are gathered to improve the consistency and comprehensiveness of summary. Given a large corpus with no annotation, FineSum first automatically identifies potential spans of opinion phrases, and further reduces the noise in identification results using aspect and sentiment classifiers. It then constructs multiple fine-grained opinion clusters under each aspect and sentiment. Each cluster expresses uniform opinions towards certain sub-aspects (e.g., “fish” in “food” aspect) or characteristics (e.g., “Mexican” in “food” aspect). To accomplish this, we train a spherical word embedding space to explicitly represent different aspects and sentiments. We then distill the knowledge from embedding to a contextualized phrase classifier, and perform clustering using the contextualized opinion-aware phrase embedding. Both automatic evaluations on the benchmark and quantitative human evaluation validate the effectiveness of our approach.more » « less
-
A real-world text corpus sometimes comprises not only text documents, but also semantic links between them (e.g., academic papers in a bibliographic network are linked by citations and co-authorships). Text documents and semantic connections form a text-rich network, which empowers a wide range of downstream tasks such as classification and retrieval. However, pretraining methods for such structures are still lacking, making it difficult to build one generic model that can be adapted to various tasks on text-rich networks. Current pretraining objectives, such as masked language modeling, purely model texts and do not take inter-document structure information into consideration. To this end, we propose our PretrAining on TexT-Rich NetwOrk framework PATTON. PATTON1 includes two pretraining strategies: network-contextualized masked language modeling and masked node prediction, to capture the inherent dependency between textual attributes and network structure. We conduct experiments on four downstream tasks in five datasets from both academic and e-commerce domains, where PATTON outperforms baselines significantly and consistently.more » « less