skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: FineSum: Target-Oriented, Fine-Grained Opinion Summarization
Target-oriented opinion summarization is to profile a target by extracting user opinions from multiple related documents. Instead of simply mining opinion ratings on a target (e.g., a restaurant) or on multiple aspects (e.g., food, service) of a target, it is desirable to go deeper, to mine opinion on fine-grained sub-aspects (e.g., fish). However, it is expensive to obtain high-quality annotations at such fine-grained scale. This leads to our proposal of a new framework, FineSum, which advances the frontier of opinion analysis in three aspects: (1) minimal supervision, where no document-summary pairs are provided, only aspect names and a few aspect/sentiment keywords are available; (2) fine-grained opinion analysis, where sentiment analysis drills down to a specific subject or characteristic within each general aspect; and (3) phrase-based summarization, where short phrases are taken as basic units for summarization, and semantically coherent phrases are gathered to improve the consistency and comprehensiveness of summary. Given a large corpus with no annotation, FineSum first automatically identifies potential spans of opinion phrases, and further reduces the noise in identification results using aspect and sentiment classifiers. It then constructs multiple fine-grained opinion clusters under each aspect and sentiment. Each cluster expresses uniform opinions towards certain sub-aspects (e.g., “fish” in “food” aspect) or characteristics (e.g., “Mexican” in “food” aspect). To accomplish this, we train a spherical word embedding space to explicitly represent different aspects and sentiments. We then distill the knowledge from embedding to a contextualized phrase classifier, and perform clustering using the contextualized opinion-aware phrase embedding. Both automatic evaluations on the benchmark and quantitative human evaluation validate the effectiveness of our approach.  more » « less
Award ID(s):
1956151 1741317 1704532
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Proc. 2023 ACM Int. Conf. on Web Search and Data Mining 
Publisher / Repository:
Date Published:
Edition / Version:
Page Range / eLocation ID:
1093 to 1101
Subject(s) / Keyword(s):
["Target-Oriented, Fine-Grained Opinion Summarization, text summarization"]
Medium: X
Singapore Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. Extracting and analyzing informative user opinion from large-scale online reviews is a key success factor in product design processes. However, user reviews are naturally unstructured, noisy, and verbose. Recent advances in abstractive text summrization provide an unprecedented opportunity to systematically generate summaries of user opinions to facilitate need finding for designers. Yet, two main gaps in the state-of-the-art opinion summarization methods limit their applicability to the product design domain. First is the lack of capabilities to guide the generative process with respect to various product aspects and user sentiments (e.g., polarity, subjectivity), and the second gap is the lack of annotated training datasets for supervised learning. This paper tackles these gaps by (1) devising an efficient and scalable methodology for abstractive opinion summarization from online reviews guided by aspects terms and sentiment polarities, and (2) automatically generating a reusable synthetic training dataset that captures various degrees of granularity and polarity. The methodology contributes a multi-instance pooling model with aspect and sentiment information integrated (MAS), a synthetic data assembled using the results of the MAS model, and a fine-tuned pretrained sequence-to-sequence model “T5” for summary generation. Numerical experiments are conducted on a large dataset scraped from a major e-commerce retail store for sneakers to demonstrate the performance, feasibility, and potentials of the developed methodology. Several directions are provided for future exploration in the area of automated opinion summarization for user-centered product design.

    more » « less
  2. null (Ed.)
    Abstract Sentiment, judgments and expressed positions are crucial concepts across international relations and the social sciences more generally. Yet, contemporary quantitative research has conventionally avoided the most direct and nuanced source of this information: political and social texts. In contrast, qualitative research has long relied on the patterns in texts to understand detailed trends in public opinion, social issues, the terms of international alliances, and the positions of politicians. Yet, qualitative human reading does not scale to the accelerating mass of digital information available currently. Researchers are in need of automated tools that can extract meaningful opinions and judgments from texts. Thus, there is an emerging opportunity to marry the model-based, inferential focus of quantitative methodology, as exemplified by ideal point models, with high resolution, qualitative interpretations of language and positions. We suggest that using alternatives to simple bag of words (BOW) representations and re-focusing on aspect-sentiment representations of text will aid researchers in systematically extracting people’s judgments and what is being judged at scale. The experimental results below show that our approach which automates the extraction of aspect and sentiment MWE pairs, outperforms BOW in classification tasks, while providing more interpretable parameters. By connecting expressed sentiment and the aspects being judged, PULSAR (Parsing Unstructured Language into Sentiment-Aspect Representations) also has deep implications for understanding the underlying dimensionality of issue positions and ideal points estimated with text. Our approach to parsing text into aspects-sentiment expressions recovers both expressive phrases (akin to categorical votes), as well as the aspects that are being judged (akin to bills). Thus, PULSAR or future systems like it, open up new avenues for the systematic analysis of high-dimensional opinions and judgments at scale within existing ideal point models. 
    more » « less
  3. null (Ed.)
    Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this pa-per, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, neglecting the benefit of coupling both, or are based on topic models that may contain overlapping concepts. We propose to first learn sentiment, aspectjoint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4%and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets. 
    more » « less
  4. Abstract Eliciting informative user opinions from online reviews is a key success factor for innovative product design and development. The unstructured, noisy, and verbose nature of user reviews, however, often complicate large-scale need finding in a format useful for designers without losing important information. Recent advances in abstractive text summarization has created the opportunity to systematically generate opinion summaries from online reviews to inform the early stages of product design and development. However, two knowledge gaps hinder the applicability of opinion summarization methods in practice. First, there is a lack of formal mechanisms to guide the generative process with respect to different categories of product attributes and user sentiments. Second, the annotated training datasets needed for supervised training of abstractive summarization models are often difficult and costly to create. This article addresses these gaps by (1) devising an efficient computational framework for abstractive opinion summarization guided by specific product attributes and sentiment polarities, and (2) automatically generating a synthetic training dataset that captures various degrees of granularity and polarity. A hierarchical multi-instance attribute-sentiment inference mode is developed for assembling a high-quality synthetic dataset, which is utilized to fine-tune a pretrained language model for abstractive summary generation. Numerical experiments conducted on a large dataset scraped from three major e-Commerce retail store for apparel and footwear products indicate the performance, feasibility, and potentials of the developed framework. Several directions are provided for future exploration in the area of automated opinion summarization for user-centered design. 
    more » « less
  5. Automated event detection from news corpora is a crucial task towards mining fast-evolving structured knowledge. As real-world events have different granularities, from the top-level themes to key events and then to event mentions corresponding to concrete actions, there are generally two lines of research: (1) theme detection tries to identify from a news corpus major themes (e.g., “2019 Hong Kong Protests” versus “2020 U.S. Presidential Election”) which have very distinct semantics; and (2) action extraction aims to extract from a single document mention-level actions (e.g., “the police hit the left arm of the protester”) that are often too fine-grained for comprehending the real-world event. In this paper, we propose a new task, key event detection at the intermediate level, which aims to detect from a news corpus key events (e.g., HK Airport Protest on Aug. 12-14), each happening at a particular time/location and focusing on the same topic. This task can bridge event understanding and structuring and is inherently challenging because of (1) the thematic and temporal closeness of different key events and (2) the scarcity of labeled data due to the fast-evolving nature of news articles. To address these challenges, we develop an unsupervised key event detection framework, EvMine, that (1) extracts temporally frequent peak phrases using a novel ttf-itf score, (2) merges peak phrases into event-indicative feature sets by detecting communities from our designed peak phrase graph that captures document cooccurrences, semantic similarities, and temporal closeness signals, and (3) iteratively retrieves documents related to each key event by training a classifier with automatically generated pseudo labels from the event-indicative feature sets and refining the detected key events using the retrieved documents in each iteration. Extensive experiments and case studies show EvMine outperforms all the baseline methods and its ablations on two real-world news corpora. 
    more » « less