skip to main content


Title: Augmenting Scientific Creativity with Retrieval across Knowledge Domains
Exposure to ideas in domains outside a scientist's own may benefit her in reformulating existing research problems in novel ways and discovering new application domains for existing solution ideas. While improved performance in scholarly search engines can help scientists efficiently identify relevant advances in domains they may already be familiar with, it may fall short of helping them explore diverse ideas \textit{outside} such domains. In this paper we explore the design of systems aimed at augmenting the end-user ability in cross-domain exploration with flexible query specification. To this end, we develop an exploratory search system in which end-users can select a portion of text core to their interest from a paper abstract and retrieve papers that have a high similarity to the user-selected core aspect but differ in terms of domains. Furthermore, end-users can `zoom in' to specific domain clusters to retrieve more papers from them and understand nuanced differences within the clusters. Our case studies with scientists uncover opportunities and design implications for systems aimed at facilitating cross-domain exploration and inspiration.  more » « less
Award ID(s):
1922090
NSF-PAR ID:
10392125
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
NLP+HCI Workshop at North American Chapter of the Association for Computational Linguistics 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Technology advances and lower equipment costs are enabling non-invasive, convenient recording of brain data outside of clinical settings in more real-world environments, and by non-experts. Despite the growing interest in and availability of brain signal datasets, most analytical tools are made for experts in the specific device technology, and have rigid constraints on the type of analysis available. We developed BrainEx to support interactive exploration and discovery within brain signals datasets. BrainEx takes advantage of algorithms that enable fast exploration of complex, large collections of time series data, while being easy to use and learn. This system enables researchers to perform similarity search, explore feature data and natural clustering, and select sequences of interest for future searches and exploration, while also maintaining the usability of a visual tool. In addition to describing the distributed architecture and visual design for BrainEx, this paper reports on a benchmark experiment showing that it outperforms other existing systems for similarity search. Additionally, we report on a preliminary user study in which domain experts used the visual exploration interface and affirmed that it meets the requirements. Finally, it presents a case study using BrainEx to explore real-world, domain-relevant data. 
    more » « less
  2. High-Performance Computing (HPC) is increasingly being used in traditional scientific domains as well as emerging areas like Deep Learning (DL). This has led to a diverse set of professionals who interact with state-of-the-art HPC systems. The deployment of Science Gateways for HPC systems like Open On-Demand has a significant positive impact on these users in migrating their workflows to HPC systems. Although computing capabilities are ubiquitously available (as on-premises or in the cloud HPC infrastructure), significant effort and expertise are required to use them effectively. This is particularly challenging for domain scientists and other users whose primary expertise lies outside of computer science. In this paper, we seek to minimize the steep learning curve and associated complexities of using state-of-the-art high-performance systems by creating SAI: an AI-Enabled Speech Assistant Interface for Science Gateways in High Performance Computing. We use state-of-the-art AI models for speech and text and fine-tune them for the HPC arena by retraining them on a new HPC dataset we create. We use ontologies and knowledge graphs to capture the complex relationships between various components of the HPC ecosystem. We finally show how one can integrate and deploy SAI in Open OnDemand and evaluate its functionality and performance on real HPC systems. To the best of our knowledge, this is the first effort aimed at designing and developing an AI-powered speech-assisted interface for science gateways in HPC. 
    more » « less
  3. null (Ed.)
    With the demand and abundance of information increasing over the last two decades, generations of computer scientists are trying to improve the whole process of information searching, retrieval, and storage. With the diversification of the information sources, users' demand for various requirements of the data has also changed drastically both in terms of usability and performance. Due to the growth of the source material and requirements, correctly sorting, filtering, and storing has given rise to many new challenges in the field. With the help of all four other teams on this project, we are developing an information retrieval, analysis, and storage system to retrieve data from Virginia Tech's Electronic Thesis and Dissertation (ETD), Twitter, and Web Page archives. We seek to provide an appropriate data research and management tool to the users to access specific data. The system will also give certain users the authority to manage and add more data to the system. This project's deliverable will be combined with four others to produce a system usable by Virginia Tech's library system to manage, maintain, and analyze these archives. This report attempts to introduce the system components and design decisions regarding how it has been planned and implemented. Our team has developed a front end web interface that is able to search, retrieve, and manage three important content collection types: ETDs, tweets, and web pages. The interface incorporates a simple hierarchical user permission system, providing different levels of access to its users. In order to facilitate the workflow with other teams, we have containerized this system and made it available on the Virginia Tech cloud server. The system also makes use of a dynamic workflow system using a KnowledgeGraph and Apache Airflow, providing high levels of functional extensibility to the system. This allows curators and researchers to use containerised services for crawling, pre-processing, parsing, and indexing their custom corpora and collections that are available to them in the system. 
    more » « less
  4. null (Ed.)
    The success of cross-domain recommender systems in capturing user interests across multiple domains has recently brought much attention to them. These recommender systems aim to improve the quality of suggestions and defy the cold-start problem by transferring information from one (or more) source domain(s) to a target domain. However, most cross-domain recommenders ignore the sequential information in user history. They only rely on an aggregate or snapshot of user feedback in the past. Most importantly, they do not explicitly model how users transition from one domain to another domain as users continue to interact with different item domains. In this paper, we argue that between-domain transitions in user sequences are useful in improving recommendation quality, dealing with the cold-start problem, and revealing interesting aspects of how user interests transform from one domain to another. We propose TransCrossCF, transition-based cross-domain collaborative filtering, that can capture both within and between domain transitions of user feedback sequences while understanding the relationship between different item types in different domains. Specifically, we model each purchase of a user as a transition from his/her previous item to the next one, under the effect of item domains and user preferences. Our intensive experiments demonstrate that TransCrossCF outperforms the state-of-the-art methods in recommendation task on three real-world datasets, both in the cold-start and hot-start scenarios. Moreover, according to our context analysis evaluations, the between-domain relations captured by TransCrossCF are interpretable and intuitive. 
    more » « less
  5. null (Ed.)
    Recent years have witnessed a growing body of research on autonomous activity recognition models for use in deployment of mobile systems in new settings such as when a wearable system is adopted by a new user. Current research, however, lacks comprehensive frameworks for transfer learning. Specifically, it lacks the ability to deal with partially available data in new settings. To address these limitations, we propose {\it OptiMapper}, a novel uninformed cross-subject transfer learning framework for activity recognition. OptiMapper is a combinatorial optimization framework that extracts abstract knowledge across subjects and utilizes this knowledge for developing a personalized and accurate activity recognition model in new subjects. To this end, a novel community-detection-based clustering of unlabeled data is proposed that uses the target user data to construct a network of unannotated sensor observations. The clusters of these target observations are then mapped onto the source clusters using a complete bipartite graph model. In the next step, the mapped labels are conditionally fused with the prediction of a base learner to create a personalized and labeled training dataset for the target user. We present two instantiations of OptiMapper. The first instantiation, which is applicable for transfer learning across domains with identical activity labels, performs a one-to-one bipartite mapping between clusters of the source and target users. The second instantiation performs optimal many-to-one mapping between the source clusters and those of the target. The many-to-one mapping allows us to find an optimal mapping even when the target dataset does not contain sufficient instances of all activity classes. We show that this type of cross-domain mapping can be formulated as a transportation problem and solved optimally. We evaluate our transfer learning techniques on several activity recognition datasets. Our results show that the proposed community detection approach can achieve, on average, 69%$ utilization of the datasets for clustering with an overall clustering accuracy of 87.5%. Our results also suggest that the proposed transfer learning algorithms can achieve up to 22.5% improvement in the activity recognition accuracy, compared to the state-of-the-art techniques. The experimental results also demonstrate high and sustained performance even in presence of partial data. 
    more » « less