skip to main content

Title: TransCrossCF: Transition-based Cross-Domain Collaborative Filtering
The success of cross-domain recommender systems in capturing user interests across multiple domains has recently brought much attention to them. These recommender systems aim to improve the quality of suggestions and defy the cold-start problem by transferring information from one (or more) source domain(s) to a target domain. However, most cross-domain recommenders ignore the sequential information in user history. They only rely on an aggregate or snapshot of user feedback in the past. Most importantly, they do not explicitly model how users transition from one domain to another domain as users continue to interact with different item domains. In this paper, we argue that between-domain transitions in user sequences are useful in improving recommendation quality, dealing with the cold-start problem, and revealing interesting aspects of how user interests transform from one domain to another. We propose TransCrossCF, transition-based cross-domain collaborative filtering, that can capture both within and between domain transitions of user feedback sequences while understanding the relationship between different item types in different domains. Specifically, we model each purchase of a user as a transition from his/her previous item to the next one, under the effect of item domains and user preferences. Our intensive experiments demonstrate that TransCrossCF outperforms more » the state-of-the-art methods in recommendation task on three real-world datasets, both in the cold-start and hot-start scenarios. Moreover, according to our context analysis evaluations, the between-domain relations captured by TransCrossCF are interpretable and intuitive. « less
Authors:
;
Award ID(s):
1755910
Publication Date:
NSF-PAR ID:
10296473
Journal Name:
2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA)
Page Range or eLocation-ID:
320 to 327
Sponsoring Org:
National Science Foundation
More Like this
  1. Cross-domain collaborative filtering recommenders exploit data from other domains (e.g., movie ratings) to predict users’ interests in a different target domain (e.g., suggest music). Most current cross-domain recommenders focus on modeling user ratings but pay limited attention to user reviews. Additionally, due to the complexity of these recommender systems, they cannot provide any information to users to support user decisions. To address these challenges, we propose Deep Hybrid Cross Domain (DHCD) model, a cross-domain neural framework, that can simultaneously predict user ratings, and provide useful information to strengthen the suggestions and support user decision across multiple domains. Specifically, DHCD enhances the predicted ratings by jointly modeling two crucial facets of users’ product assessment: ratings and reviews. To support decisions, it models and provides natural review-like sentences across domains according to user interests and item features. This model is robust in integrating user rating and review information from more than two domains. Our extensive experiments show that DHCD can significantly outperform advanced baselines in rating predictions and review generation tasks. For rating prediction tasks, it outperforms cross-domain and single-domain collaborative filtering as well as hybrid recommender systems. Furthermore, our review generation experiments suggest an improved perplexity score and transfer of reviewmore »information in DHCD.« less
  2. Sequential recommendation is the task of predicting the next items for users based on their interaction history. Modeling the dependence of the next action on the past actions accurately is crucial to this problem. Moreover, sequential recommendation often faces serious sparsity of item-to-item transitions in a user's action sequence, which limits the practical utility of such solutions. To tackle these challenges, we propose a Category-aware Collaborative Sequential Recommender. Our preliminary statistical tests demonstrate that the in-category item-to-item transitions are often much stronger indicators of the next items than the general item-to-item transitions observed in the original sequence. Our method makes use of item category in two ways. First, the recommender utilizes item category to organize a user's own actions to enhance dependency modeling based on her own past actions. It utilizes self-attention to capture in-category transition patterns, and determines which of the in-category transition patterns to consider based on the categories of recent actions. Second, the recommender utilizes the item category to retrieve users with similar in-category preferences to enhance collaborative learning across users, and thus conquer sparsity. It utilizes attention to incorporate in-category transition patterns from the retrieved users for the target user. Extensive experiments on two large datasetsmore »prove the effectiveness of our solution against an extensive list of state-of-the-art sequential recommendation models.« less
  3. Recommender systems predict users’ preferences over a large number of items by pooling similar information from other users and/or items in the presence of sparse observations. One major challenge is how to utilize user-item specific covariates and networks describing user-item interactions in a high-dimensional situation, for accurate personalized prediction. In this article, we propose a smooth neighborhood recommender in the framework of the latent factor models. A similarity kernel is utilized to borrow neighborhood information from continuous covariates over a user-item specific network, such as a user’s social network, where the grouping information defined by discrete covariates is also integrated through the network. Consequently, user-item specific information is built into the recommender to battle the ‘cold-start” issue in the absence of observations in collaborative and content- based filtering. Moreover, we utilize a “divide-and-conquer” version of the alternating least squares algorithm to achieve scalable computation, and establish asymptotic results for the proposed method, demonstrating that it achieves superior prediction accuracy. Finally, we illustrate that the proposed method improves substantially over its competitors in simulated examples and real benchmark data–Last.fm music data.
  4. Recommender systems predict users’ preferences over a large number of items by pooling similar information from other users and/or items in the presence of sparse observations. One major challenge is how to utilize user-item specific covariates and networks describing user-item interactions in a high-dimensional situation, for accurate personalized prediction. In this article, we propose a smooth neighborhood recommender in the framework of the latent factor models. A similarity kernel is utilized to borrow neighborhood information from continuous covariates over a user-item specific network, such as a user’s social network, where the grouping information defined by discrete covariates is also integrated through the network. Consequently, user-item specific information is built into the recommender to battle the ‘cold-start” issue in the absence of observations in collaborative and contentbased filtering. Moreover, we utilize a “divide-and-conquer” version of the alternating least squares algorithm to achieve scalable computation, and establish asymptotic results for the proposed method, demonstrating that it achieves superior prediction accuracy. Finally, we illustrate that the proposed method improves substantially over its competitors in simulated examples and real benchmark data–Last.fm music data.
  5. Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complex and user relations can be high-order. Hypergraph provides a natural way to model high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. Extensive experiments on multiple real-world datasets demonstrate the superiority of the proposed model over the current SOTA methods, and the ablation study verifies the effectiveness and rationale of the multi-channel settingmore »and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ.« less