skip to main content

Title: The reaction of thiourea and 1,3-dimethylthiourea towards organoiodines: oxidative bond formation and halogen bonding
By varying the halogen-bond-donor molecule, 11 new halogen-bonding cocrystals involving thiourea or 1,3-dimethylthiourea were obtained, namely, 1,3-dimethylthiourea–1,2-diiodo-3,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 1 , thiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·CH 4 N 2 S, 2 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 3 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–methanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·CH 4 O, 4 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–ethanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·C 2 H 6 O, 5 , 1,3-dimethylthiourea–1,4-diiodo-2,3,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 6 , 1,3-dimethylthiourea–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 3 H 8 N 2 S, 7 , 1,3-dimethylthiourea–1,1,2,2-tetraiodoethene (1/1), C 6 H 16 N 4 S 2 ·C 2 I 4 , 8 , [(dimethylamino)methylidene](1,2,2-triiodoethenyl)sulfonium iodide–1,1,2,2-tetraiodoethene–acetone (1/1/1), C 5 H 8 I 3 N 2 S + ·I − ·C 3 H 6 O·C 2 I 4 , 9 , 2-amino-4-methyl-1,3-thiazol-3-ium iodide–1,1,2,2-tetraiodoethene (2/3), 2C 4 H 7 N 2 S + ·2I − ·3C 2 I 4 , more » 10 , and 4,4-dimethyl-4 H -1,3,5-thiadiazine-3,5-diium diiodide–1,1,2,2-tetraiodoethene (2/3), 2C 5 H 12 N 4 S 2+ ·4I − ·3C 2 I 4 , 11 . When utilizing the common halogen-bond-donor molecules 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene, as well as 1,3,5-trifluoro-2,4,6-triiodobenzene, bifurcated I...S...I interactions were observed, resulting in the formation of isolated rings, chains, and sheets. Tetraiodoethylene (TIE) provided I...S...I cocrystals as well, but further yielded a sulfonium-containing product through the reaction of the S atom with TIE. This particular sulfonium motif is the first of its kind to be structurally characterized, and is stabilized in the solid state through a three-dimensional I...I halogen-bonding network. Thiourea reacted with acetone in the presence of TIE to provide two novel heterocyclic products, again stabilized in the solid state through I...I halogen bonding. « less
Authors:
; ; ;
Award ID(s):
2050042 1560300
Publication Date:
NSF-PAR ID:
10392128
Journal Name:
Acta Crystallographica Section C Structural Chemistry
Volume:
77
Issue:
10
Page Range or eLocation-ID:
599 to 609
ISSN:
2053-2296
Sponsoring Org:
National Science Foundation
More Like this
  1. Utilizing the N -heterocyclic chalcogenones hexahydro-1,3-bis(2,4,6-trimethylphenyl)-2 H -1,3-diazepine-2-thione ( SDiazMesS ) and hexahydro-1,3-bis(2,4,6-trimethylphenyl)-2 H -1,3-diazepine-2-selone ( SDiazMesSe ) as halogen-bond acceptors, a total of 24 new cocrystals were prepared. The solid-state structures of the parent molecules were also determined, along with those of their acetonitrile solvates. Through the reaction of the chalcogen atom with molecular diiodine, a variety of S—I—I and Se—I—I fragments were formed, spanning a wide range of I—I bond orders. With acetone as a reaction solvent, molecular diiodine causes the oxidative addition of acetone to the chalcogen atom, resulting in new C—S, C—Se and C—C covalent bonds under mild conditions. The common halogen-bond donors, iodopentafluorobenzene, 1,2-, 1,3- and 1,4-diiodotetrafluorobenzene, 1,3,5-trifluorotriiodobenzene and tetraiodoethylene resulted in halogen-bond-driven cocrystal formation. In most cases, the analogous SDiazMesS and SDiazMesSe cocrystals are isomorphic.
  2. The potential of pyrimidines to serve as ditopic halogen-bond acceptors is explored. The halogen-bonded cocrystals formed from solutions of either 5,5′-bipyrimidine (C 8 H 6 N 4 ) or 1,2-bis(pyrimidin-5-yl)ethyne (C 10 H 6 N 4 ) and 2 molar equivalents of 1,3-diiodotetrafluorobenzene (C 6 F 4 I 2 ) have a 1:1 composition. Each pyrimidine moiety acts as a single halogen-bond acceptor and the bipyrimidines act as ditopic halogen-bond acceptors. In contrast, the activated pyrimidines 2- and 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine (C 14 H 13 N 3 ) are ditopic halogen-bond acceptors, and 1:1 halogen-bonded cocrystals are formed from 1:1 mixtures of each of the activated pyrimidines and either 1,2- or 1,3-diiodotetrafluorobenzene. A 1:1 cocrystal was also formed between 2-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4-diiodotetrafluorobenzene, while a 2:1 cocrystal was formed between 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4-diiodotetrafluorobenzene.
  3. Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis[(acetonitrile-κ N )(6-sulfanylidenepiperidin-2-one-κ S )copper(I)], [Cu 2 I 2 (CH 3 CN) 2 (C 5 H 7 NOS) 2 ] ( I ), bis(acetonitrile-κ N )tetra-μ 3 -iodido-bis(6-sulfanylidenepiperidin-2-one-κ S )- tetrahedro -tetracopper(I), [Cu 4 I 4 (CH 3 CN) 4 (C 5 H 7 NOS) 4 ] ( II ), catena -poly[[(μ-6-sulfanylidenepiperidin-2-one-κ 2 O : S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NOS)] n ( III ), poly[[(piperidine-2,6-dithione-κ S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NS 2 )] n ( IV ), and poly[[(μ-isoindoline-1,3-dithione-κ 2 S : S )copper(I)]-μ 3 -iodido], [CuI(C 8 H 5 NS 2 )] n ( V ). Compounds I and II crystallize as discrete dimeric and tetrameric complexes, whereas III , IV , and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexagonal [Cu 3 I 3 ] structure that is notmore »supported by bridging ligands. Structures I , II , and IV display weak to moderately strong Cu...Cu cuprophilic interactions [Cu...Cu internuclear distances range between 2.5803 (10) and 2.8485 (14) Å]. All structures except III display weak hydrogen-bonding interactions between the N—H of the ligand and the μ 2 and μ 3 -I − atoms. Structure III contains classical N–H...O interactions between the SNO ligands that connect the molecules in a three-dimensional framework. Complex V features π–π stacking interactions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV , there were three partially occupied solvent molecules of dichloromethane and one partially occupied molecule of acetonitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015). Acta Cryst . C 71 , 9–18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecules. The given chemical formula and other crystal data do not take into account the solvent molecules.« less
  4. The reaction of 1,3,5-( i Pr 2 PO) 3 C 6 H 3 with Co 2 (CO) 8 leads to the isolation of a POCOP-type mononuclear pincer complex {κ P ,κ C ,κ P -2,4,6-( i Pr 2 PO) 3 C 6 H 2 }Co(CO) 2 (1) or a tetranuclear species {κ P -{κ P ,κ C ,κ P -2,4,6-( i Pr 2 PO) 3 C 6 H 2 }Co(CO) 2 } 2 Co 2 (CO) 6 (2), depending on the ligand to cobalt ratio employed. The latter compound can be an impurity during the synthesis of {2,6-( i Pr 2 PO) 2 -4-Me 2 N-C 6 H 2 }Co(CO) 2 , when the ligand precursor 5-(dimethylamino)resorcinol is contaminated with phloroglucinol due to incomplete monoamination. Similarly, the reaction of 1,3,5-( i Pr 2 PO) 3 C 6 H 3 with NiCl 2 in the presence of 4-dimethylaminopyridine provides {κ P ,κ C ,κ P -2,4,6-( i Pr 2 PO) 3 C 6 H 2 }NiCl (3) bearing an appended phosphinite group. Structures 1–3 have been studied by X-ray crystallography.
  5. Reactions of {(C 6 F 5 )Pt[S(CH 2 CH 2 -) 2 ](μ-Cl)} 2 and R 3 P yield the bis(phosphine) species trans -(C 6 F 5 )(R 3 P) 2 PtCl [R = Et ( Pt'Cl ), Ph, ( p -CF 3 C 6 H 4 ) 3 P; 88-81 %]. Additions of Pt'Cl and H(C≡C) n H ( n = 1, 2; HNEt 2 , 20 mol % CuI) give Pt'C 2 H (37 %, plus Pt'I , 16 %) and Pt'C 4 H (88 %). Homocoupling of Pt'C 4 H under Hay conditions (O 2 , CuCl, TMEDA, acetone) gives Pt'C 8 Pt' (85 %), but Pt'C 2 H affords only traces of Pt'C 4 Pt' . However, condensation of Pt'C 4 H and Pt'Cl (HNEt 2 , 20 mol % CuI) yields Pt'C 4 Pt' (97 %). Hay heterocouplings of Pt'C 4 H or trans -( p -tol)(Ph 3 P) 2 Pt(C≡C) 2 H ( Pt*C 4 H ) and excess HC≡CSiEt 3 give Pt'C 6 SiEt 3 (76 %) or Pt*C 6 SiEt 3 (89 %). The latter and wet n -Bu 4 N + F - react to yield labile Pt*C 6 H (60more »%). Hay homocouplings of Pt*C 4 H and Pt*C 6 H give Pt*C 8 Pt* (64 %) and Pt*C 12 Pt* (64 %). Reaction of trans -(C 6 F 5 )( p -tol 3 P) 2 PtCl ( PtCl ) and HC≡CH (HNEt 2 , 20 mol % CuI) yields only traces of PtC 2 H . However, an analogous reaction with HC≡CSiMe 3 gives PtC 2 SiMe 3 (75 %), which upon treatment with silica yields PtC 2 H (77 %). An analogous coupling of trans -(C 6 F 5 )(Ph 3 P) 2 PtCl with H(C≡C) 2 H gives trans -(C 6 F 5 )(Ph 3 P) 2 Pt(C≡C) 2 H (34 %). Advantages and disadvantages of the various trans -(Ar)(R 3 P) 2 Pt end-groups are analyzed.« less