skip to main content


Title: A structural and computational comparison of close contacts and related intermolecular energies of interaction in the structures of 1,3-diiodo-5-nitrobenzene, 1,3-dibromo-5-nitrobenzene, and 1,3-dichloro-5-nitrobenzene

1,3-Diiodo-5-nitrobenzene, C6H3I2NO2, and 1,3-dibromo-5-nitrobenzene, C6H3Br2NO2, crystallize in the centrosymmetric space groupP21/m, and are isostructural with 1,3-dichloro-5-nitrobenzene, C6H3Cl2NO2, that has been redetermined at 100 K for consistency. While the three-dimensional packing in all three structures is similar, the size of the halogen atom affects the nonbonded close contacts observed between molecules. Thus, the structure of 1,3-diiodo-5-nitrobenzene features a close Type 1 I...I contact, the structure of 1,3-dibromo-5-nitrobenzene features a self-complementary nitro-O...Br close contact, while the structure of 1,3-dichloro-5-nitrobenzene also has a self-complementary nitro-O...Cl interaction, as well as a bifurcated C—H...O(nitro) close contact. Notably, the major energetically attractive intermolecular interaction between adjacent molecules in each of the three structures corresponds to a π-stacked interaction. The self-complementary halogen...O(nitro) and C—H...O(nitro) interactions correspond to significant cohesive attraction between molecules in each structure, while the Type 1 halogen–halogen contact is weakly cohesive.

 
more » « less
Award ID(s):
2108202 1903593 1903581
NSF-PAR ID:
10470764
Author(s) / Creator(s):
; ;
Publisher / Repository:
International Union of Crystallography
Date Published:
Journal Name:
Acta Crystallographica Section C Structural Chemistry
Volume:
78
Issue:
10
ISSN:
2053-2296
Page Range / eLocation ID:
552 to 558
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. By varying the halogen-bond-donor molecule, 11 new halogen-bonding cocrystals involving thiourea or 1,3-dimethylthiourea were obtained, namely, 1,3-dimethylthiourea–1,2-diiodo-3,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 1 , thiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·CH 4 N 2 S, 2 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 3 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–methanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·CH 4 O, 4 , 1,3-dimethylthiourea–1,3-diiodo-2,4,5,6-tetrafluorobenzene–ethanol (1/1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S·C 2 H 6 O, 5 , 1,3-dimethylthiourea–1,4-diiodo-2,3,5,6-tetrafluorobenzene (1/1), C 6 F 4 I 2 ·C 3 H 8 N 2 S, 6 , 1,3-dimethylthiourea–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 3 H 8 N 2 S, 7 , 1,3-dimethylthiourea–1,1,2,2-tetraiodoethene (1/1), C 6 H 16 N 4 S 2 ·C 2 I 4 , 8 , [(dimethylamino)methylidene](1,2,2-triiodoethenyl)sulfonium iodide–1,1,2,2-tetraiodoethene–acetone (1/1/1), C 5 H 8 I 3 N 2 S + ·I − ·C 3 H 6 O·C 2 I 4 , 9 , 2-amino-4-methyl-1,3-thiazol-3-ium iodide–1,1,2,2-tetraiodoethene (2/3), 2C 4 H 7 N 2 S + ·2I − ·3C 2 I 4 , 10 , and 4,4-dimethyl-4 H -1,3,5-thiadiazine-3,5-diium diiodide–1,1,2,2-tetraiodoethene (2/3), 2C 5 H 12 N 4 S 2+ ·4I − ·3C 2 I 4 , 11 . When utilizing the common halogen-bond-donor molecules 1,2-, 1,3-, and 1,4-diiodotetrafluorobenzene, as well as 1,3,5-trifluoro-2,4,6-triiodobenzene, bifurcated I...S...I interactions were observed, resulting in the formation of isolated rings, chains, and sheets. Tetraiodoethylene (TIE) provided I...S...I cocrystals as well, but further yielded a sulfonium-containing product through the reaction of the S atom with TIE. This particular sulfonium motif is the first of its kind to be structurally characterized, and is stabilized in the solid state through a three-dimensional I...I halogen-bonding network. Thiourea reacted with acetone in the presence of TIE to provide two novel heterocyclic products, again stabilized in the solid state through I...I halogen bonding. 
    more » « less
  2. Abstract

    The influence of halogen substitutions (F, Cl, Br, and I) on the energy levels of the self‐assembled hole‐extracting molecule [2‐(9H‐Carbazol‐9‐yl)ethyl]phosphonic acid (2PACz), is investigated. It is found that the formation of self‐assembled monolayers (SAMs) of [2‐(3,6‐Difluoro‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (F‐2PACz), [2‐(3,6‐Dichloro‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (Cl‐2PACz), [2‐(3,6‐Dibromo‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (Br‐2PACz), and [2‐(3,6‐Diiodo‐9H‐carbazol‐9‐yl)ethyl]phosphonic acid (I‐2PACz) directly on indium tin oxide (ITO) increases its work function from 4.73 eV to 5.68, 5.77, 5.82, and 5.73 eV, respectively. Combining these ITO/SAM electrodes with the ternary bulk‐heterojunction (BHJ) system PM6:PM7‐Si:BTP‐eC9 yields organic photovoltaic (OPV) cells with power conversion efficiency (PCE) in the range of 17.7%–18.5%. OPVs featuring Cl‐2PACz SAMs yield the highest PCE of 18.5%, compared to cells with F‐2PACz (17.7%), Br‐2PACz (18.0%), or I‐2PACz (18.2%). Data analysis reveals that the enhanced performance of Cl‐2PACz‐based OPVs relates to the increased hole mobility, decreased interface resistance, reduced carrier recombination, and longer carrier lifetime. Furthermore, OPVs featuring Cl‐2PACz show enhanced stability under continuous illumination compared to ITO/PEDOT:PSS‐based cells. Remarkably, the introduction of the n‐dopant benzyl viologen into the BHJ further boosted the PCE of the ITO/Cl‐2PACz cells to a maximum value of 18.9%, a record‐breaking value for SAM‐based OPVs and on par with the best‐performing OPVs reported to date.

     
    more » « less
  3. null (Ed.)
    Copper(I) iodide complexes are well known for displaying a diverse array of structural features even when only small changes in ligand design are made. This structural diversity is well displayed by five copper(I) iodide compounds reported here with closely related piperidine-2,6-dithione (SNS), isoindoline-1,3-dithione (SNS6), and 6-thioxopiperidin-2-one (SNO) ligands: di-μ-iodido-bis[(acetonitrile-κ N )(6-sulfanylidenepiperidin-2-one-κ S )copper(I)], [Cu 2 I 2 (CH 3 CN) 2 (C 5 H 7 NOS) 2 ] ( I ), bis(acetonitrile-κ N )tetra-μ 3 -iodido-bis(6-sulfanylidenepiperidin-2-one-κ S )- tetrahedro -tetracopper(I), [Cu 4 I 4 (CH 3 CN) 4 (C 5 H 7 NOS) 4 ] ( II ), catena -poly[[(μ-6-sulfanylidenepiperidin-2-one-κ 2 O : S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NOS)] n ( III ), poly[[(piperidine-2,6-dithione-κ S )copper(I)]-μ 3 -iodido], [CuI(C 5 H 7 NS 2 )] n ( IV ), and poly[[(μ-isoindoline-1,3-dithione-κ 2 S : S )copper(I)]-μ 3 -iodido], [CuI(C 8 H 5 NS 2 )] n ( V ). Compounds I and II crystallize as discrete dimeric and tetrameric complexes, whereas III , IV , and V crystallize as polymeric two-dimensional sheets. To the best of our knowledge, compound III is the first instance of an extended hexagonal [Cu 3 I 3 ] structure that is not supported by bridging ligands. Structures I , II , and IV display weak to moderately strong Cu...Cu cuprophilic interactions [Cu...Cu internuclear distances range between 2.5803 (10) and 2.8485 (14) Å]. All structures except III display weak hydrogen-bonding interactions between the N—H of the ligand and the μ 2 and μ 3 -I − atoms. Structure III contains classical N–H...O interactions between the SNO ligands that connect the molecules in a three-dimensional framework. Complex V features π–π stacking interactions between the aryl rings of the SNS6 ligands within the same polymeric sheet. In structure IV , there were three partially occupied solvent molecules of dichloromethane and one partially occupied molecule of acetonitrile present in the asymmetric unit. The SQUEEZE routine [Spek (2015). Acta Cryst . C 71 , 9–18] was used to correct the diffraction data for diffuse scattering effects and to identify the solvent molecules. The given chemical formula and other crystal data do not take into account the solvent molecules. 
    more » « less
  4. Abstract

    Facile reduction of aryl halides with a combination of 5% Pd/C, B2(OH)4, and 4‐methylmorpholine is reported. Aryl bromides, iodides, and chlorides were efficiently reduced. Aryl dihalides containing two different halogen atoms underwent selective reduction: I over Br and Cl, and Br over Cl. Beyond these, aryl triflates were efficiently reduced. This combination was broadly general, effectuating reductions of benzylic halides and ethers, alkenes, alkynes, aldehydes, and azides, as well as forN‐Cbz deprotection. A cyano group was unaffected, but a nitro group and a ketone underwent reduction to a low extent. When B2(OD)4was used for aryl halide reduction, a significant amount of deuteriation occurred. However, H atom incorporation competed and increased in slower reactions. 4‐Methylmorpholine was identified as a possible source of H atoms in this, but a combination of only 4‐methylmorpholine and Pd/C did not result in reduction. Hydrogen gas has been observed to form with this reagent combination. Experiments aimed at understanding the chemistry led to the proposal of a plausible mechanism and to the identification ofN,N‐bis(methyl‐d3)pyridin‐4‐amine (DMAP‐d6) and B2(OD)4as an effective combination for full aromatic deuteriation.

    magnified image

     
    more » « less
  5. The title thiazole orange derivative, bearing an alkene substituent, crystallized as a monohydrate of its iodide salt, namely, (Z)-1-(hex-5-en-1-yl)-4-{[3-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidene]methyl}quinolin-1-ium iodide monohydrate, C24H25N2S+·I·H2O. The packing features aromatic π-stacking and van der Waals interactions. The water molecule of crystallization interacts with the cation and anionviaO—H...N and O—H...I hydrogen bonds, respectively.

     
    more » « less