Normalizing flows map an independent set of latent variables to their samples using a bijective transformation. Despite the exact correspondence between samples and latent variables, their high level relationship is not well understood. In this paper we characterize the geometric structure of flows using principal manifolds and understand the relationship between latent variables and samples using contours. We introduce a novel class of normalizing flows, called principal component flows (PCF), whose contours are its principal manifolds, and a variant for injective flows (iPCF) that is more efficient to train than regular injective flows. PCFs can be constructed using any flow architecture, are trained with a regularized maximum likelihood objective and can perform density estimation on all of their principal manifolds. In our experiments we show that PCFs and iPCFs are able to learn the principal manifolds over a variety of datasets. Additionally, we show that PCFs can perform density estimation on data that lie on a manifold with variable dimensionality, which is not possible with existing normalizing flows.
more »
« less
VQ-Flows: Vector Quantized Local Normalizing Flows
Normalizing flows provide an elegant approach to generative modeling that allows for efficient sampling and exact density evaluation of unknown data distributions. However, current techniques have significant limitations in their expressivity when the data distribution is supported on a lowdimensional manifold or has a non-trivial topology. We introduce a novel statistical framework for learning a mixture of local normalizing flows as “chart maps” over the data manifold. Our framework augments the expressivity of recent approaches while preserving the signature property of normalizing flows, that they admit exact density evaluation. We learn a suitable atlas of charts for the data manifold via a vector quantized autoencoder (VQ-AE) and the distributions over them using a conditional flow. We validate experimentally that our probabilistic framework enables existing approaches to better model data distributions over complex manifolds.
more »
« less
- PAR ID:
- 10392149
- Date Published:
- Journal Name:
- Uncertainty in artificial intelligence
- ISSN:
- 1525-3384
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Normalizing flows—a popular class of deep generative models—often fail to represent extreme phenomena observed in real-world processes. In particular, existing normalizing flow architectures struggle to model multivariate extremes, characterized by heavy-tailed marginal distributions and asymmetric tail dependence among variables. In light of this shortcoming, we propose COMET (COpula Multivariate ExTreme) Flows, which decompose the process of modeling a joint distribution into two parts: (i) modeling its marginal distributions, and (ii) modeling its copula distribution. COMET Flows capture heavy-tailed marginal distributions by combining a parametric tail belief at extreme quantiles of the marginals with an empirical kernel density function at mid-quantiles. In addition, COMET Flows capture asymmetric tail dependence among multivariate extremes by viewing such dependence as inducing a low-dimensional manifold structure in feature space. Experimental results on both synthetic and real-world datasets demonstrate the effectiveness of COMET flows in capturing both heavy-tailed marginals and asymmetric tail dependence compared to other state-of-the-art baseline architectures. All code is available at https://github.com/andrewmcdonald27/COMETFlows.more » « less
-
Abstract Monitoring machine health and product quality enables predictive maintenance that optimizes repairs to minimize factory downtime. Data-driven intelligent manufacturing often relies on probabilistic techniques with intractable distributions. For example, generative models of data distributions can balance fault classes with synthetic data, and sampling the posterior distribution of hidden model parameters enables prognosis of degradation trends. Normalizing flows can address these problems while avoiding the training instability or long inference times of other generative Deep Learning (DL) models like Generative Adversarial Networks (GAN), Variational Autoencoders (VAE), and diffusion networks. To evaluate normalizing flows for manufacturing, experiments are conducted to synthesize surface defect images from an imbalanced data set and estimate parameters of a tool wear degradation model from limited observations. Results show that normalizing flows are an effective, multi-purpose DL architecture for solving these problems in manufacturing. Future work should explore normalizing flows for more complex degradation models and develop a framework for likelihood-based anomaly detection. Code is available at https://github.com/uky-aism/flows-for-manufacturing.more » « less
-
Normalizing flows is a density estimation method that provides efficient exact likelihood estimation and sampling (Dinh et al., 2014) from high-dimensional distributions. This method depends on the use of the change of variables formula, which requires an invertible transform. Thus normalizing flow architectures are built to be invertible by design (Dinh et al., 2014). In theory, the invertibility of architectures constrains the expressiveness, but the use of coupling layers allows normalizing flows to exploit the power of arbitrary neural networks, which do not need to be invertible, (Dinh et al., 2016) and layer invertibility means that, if properly implemented, many layers can be stacked to increase expressiveness without creating a training memory bottleneck. The package we present, InvertibleNetworks.jl, is a pure Julia (Bezanson et al., 2017) imple- mentation of normalizing flows. We have implemented many relevant neural network layers, including GLOW 1x1 invertible convolutions (Kingma & Dhariwal, 2018), affine/additive coupling layers (Dinh et al., 2014), Haar wavelet multiscale transforms (Haar, 1909), and Hierarchical invertible neural transport (HINT) (Kruse et al., 2021), among others. These modular layers can be easily composed and modified to create different types of normalizing flows. As starting points, we have implemented RealNVP, GLOW, HINT, Hyperbolic networks (Lensink et al., 2022) and their conditional counterparts for users to quickly implement their individual applications.more » « less
-
Nonlinear monotone transformations are used extensively in normalizing flows to construct invertible triangular mappings from simple distributions to complex ones. In existing literature, monotonicity is usually enforced by restricting function classes or model parameters and the inverse transformation is often approximated by root-finding algorithms as a closed-form inverse is unavailable. In this paper, we introduce a new integral-based approach termed: Atomic Unrestricted Time Machine (AUTM), equipped with unrestricted integrands and easy-to-compute explicit inverse. AUTM offers a versatile and efficient way to the design of normalizing flows with explicit inverse and unrestricted function classes or parameters. Theoretically, we present a constructive proof that AUTM is universal: all monotonic normalizing flows can be viewed as limits of AUTM flows. We provide a concrete example to show how to approximate any given monotonic normalizing flow using AUTM flows with guaranteed convergence. Our result implies that AUTM can be used to transform an existing flow into a new one equipped with explicit inverse and unrestricted parameters. The performance of the new approach is evaluated on high dimensional density estimation, variational inference and image generation.more » « less
An official website of the United States government

