skip to main content


Title: Provable detection of propagating sampling bias in prediction models
With an increased focus on incorporating fairness in machine learning models, it becomes imperative not only to assess and mitigate bias at each stage of the machine learning pipeline but also to understand the downstream impacts of bias across stages. Here we consider a general, but realistic, scenario in which a predictive model is learned from (potentially biased) training data, and model predictions are assessed post-hoc for fairness by some auditing method. We provide a theoretical analysis of how a specific form of data bias, differential sampling bias, propagates from the data stage to the prediction stage. Unlike prior work, we evaluate the downstream impacts of data biases quantitatively rather than qualitatively and prove theoretical guarantees for detection. Under reasonable assumptions, we quantify how the amount of bias in the model predictions varies as a function of the amount of differential sampling bias in the data, and at what point this bias becomes provably detectable by the auditor. Through experiments on two criminal justice datasets– the well-known COMPAS dataset and historical data from NYPD’s stop and frisk policy– we demonstrate that the theoretical results hold in practice even when our assumptions are relaxed.  more » « less
Award ID(s):
2040898
NSF-PAR ID:
10392150
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 37th AAAI Conference on Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In recent years, many incidents have been reported where machine learning models exhibited discrimination among people based on race, sex, age, etc. Research has been conducted to measure and mitigate unfairness in machine learning models. For a machine learning task, it is a common practice to build a pipeline that includes an ordered set of data preprocessing stages followed by a classifier. However, most of the research on fairness has considered a single classifier based prediction task. What are the fairness impacts of the preprocessing stages in machine learning pipeline? Furthermore, studies showed that often the root cause of unfairness is ingrained in the data itself, rather than the model. But no research has been conducted to measure the unfairness caused by a specific transformation made in the data preprocessing stage. In this paper, we introduced the causal method of fairness to reason about the fairness impact of data preprocessing stages in ML pipeline. We leveraged existing metrics to define the fairness measures of the stages. Then we conducted a detailed fairness evaluation of the preprocessing stages in 37 pipelines collected from three different sources. Our results show that certain data transformers are causing the model to exhibit unfairness. We identified a number of fairness patterns in several categories of data transformers. Finally, we showed how the local fairness of a preprocessing stage composes in the global fairness of the pipeline. We used the fairness composition to choose appropriate downstream transformer that mitigates unfairness in the machine learning pipeline. 
    more » « less
  2. With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc. has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach significantly outperforms an automated approach on trust, interpretability and accountability. 
    more » « less
  3. null (Ed.)
    We study fairness in supervised few-shot meta-learning models that are sensitive to discrimination (or bias) in historical data. A machine learning model trained based on biased data tends to make unfair predictions for users from minority groups. Although this problem has been studied before, existing methods mainly aim to detect and control the dependency effect of the protected variables (e.g. race, gender) on target prediction based on a large amount of training data. These approaches carry two major drawbacks that (1) lacking showing a global cause-effect visualization for all variables; (2) lacking generalization of both accuracy and fairness to unseen tasks. In this work, we first discover discrimination from data using a causal Bayesian knowledge graph which not only demonstrates the dependency of the protected variable on target but also indicates causal effects between all variables. Next, we develop a novel algorithm based on risk difference in order to quantify the discriminatory influence for each protected variable in the graph. Furthermore, to protect prediction from unfairness, a the fast-adapted bias-control approach in meta-learning is proposed, which efficiently mitigates statistical disparity for each task and it thus ensures independence of protected attributes on predictions based on biased and few-shot data samples. Distinct from existing meta-learning models, group unfairness of tasks are efficiently reduced by leveraging the mean difference between (un)protected groups for regression problems. Through extensive experiments on both synthetic and real-world data sets, we demonstrate that our proposed unfairness discovery and prevention approaches efficiently detect discrimination and mitigate biases on model output as well as generalize both accuracy and fairness to unseen tasks with a limited amount of training samples. 
    more » « less
  4. Schölkopf, Bernhard ; Uhler, Caroline ; Zhang, Kun (Ed.)
    Fairness of machine learning algorithms has been of increasing interest. In order to suppress or eliminate discrimination in prediction, various notions as well as approaches have been proposed to impose fairness. Given a notion of fairness, an essential problem is then whether or not it can always be attained, even if with an unlimited amount of data. This issue is, however, not well addressed yet. In this paper, focusing on the Equalized Odds notion of fairness, we consider the attainability of this criterion and, furthermore, if it is attainable, the optimality of the prediction performance under various settings. In particular, for prediction performed by a deterministic function of input features, we give conditions under which Equalized Odds can hold true; if the stochastic prediction is acceptable, we show that under mild assumptions, fair predictors can always be derived. For classification, we further prove that compared to enforcing fairness by post-processing, one can always benefit from exploiting all available features during training and get potentially better prediction performance while remaining fair. Moreover, while stochastic prediction can attain Equalized Odds with theoretical guarantees, we also discuss its limitation and potential negative social impacts. 
    more » « less
  5. We propose definitions of fairness in machine learning and artificial intelligence systems that are informed by the framework of intersectionality, a critical lens from the legal, social science, and humanities literature which analyzes how interlocking systems of power and oppression affect individuals along overlapping dimensions including gender, race, sexual orientation, class, and disability. We show that our criteria behave sensibly for any subset of the set of protected attributes, and we prove economic, privacy, and generalization guarantees. Our theoretical results show that our criteria meaningfully operationalize AI fairness in terms of real-world harms, making the measurements interpretable in a manner analogous to differential privacy. We provide a simple learning algorithm using deterministic gradient methods, which respects our intersectional fairness criteria. The measurement of fairness becomes statistically challenging in the minibatch setting due to data sparsity, which increases rapidly in the number of protected attributes and in the values per protected attribute. To address this, we further develop a practical learning algorithm using stochastic gradient methods which incorporates stochastic estimation of the intersectional fairness criteria on minibatches to scale up to big data. Case studies on census data, the COMPAS criminal recidivism dataset, the HHP hospitalization data, and a loan application dataset from HMDA demonstrate the utility of our methods. 
    more » « less