skip to main content

Title: Unfairness Discovery and Prevention For Few-Shot Regression
We study fairness in supervised few-shot meta-learning models that are sensitive to discrimination (or bias) in historical data. A machine learning model trained based on biased data tends to make unfair predictions for users from minority groups. Although this problem has been studied before, existing methods mainly aim to detect and control the dependency effect of the protected variables (e.g. race, gender) on target prediction based on a large amount of training data. These approaches carry two major drawbacks that (1) lacking showing a global cause-effect visualization for all variables; (2) lacking generalization of both accuracy and fairness to unseen tasks. In this work, we first discover discrimination from data using a causal Bayesian knowledge graph which not only demonstrates the dependency of the protected variable on target but also indicates causal effects between all variables. Next, we develop a novel algorithm based on risk difference in order to quantify the discriminatory influence for each protected variable in the graph. Furthermore, to protect prediction from unfairness, a the fast-adapted bias-control approach in meta-learning is proposed, which efficiently mitigates statistical disparity for each task and it thus ensures independence of protected attributes on predictions based on biased and few-shot data samples. Distinct from existing meta-learning models, group unfairness of tasks are efficiently reduced by leveraging the mean difference between (un)protected groups for regression problems. more » Through extensive experiments on both synthetic and real-world data sets, we demonstrate that our proposed unfairness discovery and prevention approaches efficiently detect discrimination and mitigate biases on model output as well as generalize both accuracy and fairness to unseen tasks with a limited amount of training samples. « less
Award ID(s):
Publication Date:
Journal Name:
in Proceedings of the IEEE International Conference on Knowledge Graph (ICKG)
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Artificial intelligence nowadays plays an increasingly prominent role in our life since decisions that were once made by humans are now delegated to automated systems. A machine learning algorithm trained based on biased data, however, tends to make unfair predictions. Developing classification algorithms that are fair with respect to protected attributes of the data thus becomes an important problem. Motivated by concerns surrounding the fairness effects of sharing and few-shot machine learning tools, such as the Model Agnostic Meta-Learning [1] framework, we propose a novel fair fast-adapted few-shot meta-learning approach that efficiently mitigates biases during meta train by ensuring controlling the decision boundary covariance that between the protected variable and the signed distance from the feature vectors to the decision boundary. Through extensive experiments on two real-world image benchmarks over three state-of-the-art meta-learning algorithms, we empirically demonstrate that our proposed approach efficiently mitigates biases on model output and generalizes both accuracy and fairness to unseen tasks with a limited amount of training samples.
  2. The problem of learning to generalize on unseen classes during the training step, also known as few-shot classification, has attracted considerable attention. Initialization based methods, such as the gradient-based model agnostic meta-learning (MAML) [1], tackle the few-shot learning problem by “learning to fine-tune”. The goal of these approaches is to learn proper model initialization so that the classifiers for new classes can be learned from a few labeled examples with a small number of gradient update steps. Few shot meta-learning is well-known with its fast-adapted capability and accuracy generalization onto unseen tasks [2]. Learning fairly with unbiased outcomes is another significant hallmark of human intelligence, which is rarely touched in few-shot meta-learning. In this work, we propose a novel Primal-Dual Fair Meta-learning framework, namely PDFM, which learns to train fair machine learning models using only a few examples based on data from related tasks. The key idea is to learn a good initialization of a fair model’s primal and dual parameters so that it can adapt to a new fair learning task via a few gradient update steps. Instead of manually tuning the dual parameters as hyperparameters via a grid search, PDFM optimizes the initialization of the primal and dualmore »parameters jointly for fair meta-learning via a subgradient primal-dual approach. We further instantiate an example of bias controlling using decision boundary covariance (DBC) [3] as the fairness constraint for each task, and demonstrate the versatility of our proposed approach by applying it to classification on a variety of three real-world datasets. Our experiments show substantial improvements over the best prior work for this setting.« less
  3. Predictive models learned from historical data are widely used to help companies and organizations make decisions. However, they may digitally unfairly treat unwanted groups, raising concerns about fairness and discrimination. In this paper, we study the fairness-aware ranking problem which aims to discover discrimination in ranked datasets and reconstruct the fair ranking. Existing methods in fairness-aware ranking are mainly based on statistical parity that cannot measure the true discriminatory effect since discrimination is causal. On the other hand, existing methods in causal-based anti-discrimination learning focus on classification problems and cannot be directly applied to handle the ranked data. To address these limitations, we propose to map the rank position to a continuous score variable that represents the qualification of the candidates. Then, we build a causal graph that consists of both the discrete profile attributes and the continuous score. The path-specific effect technique is extended to the mixed-variable causal graph to identify both direct and indirect discrimination. The relationship between the path-specific effects for the ranked data and those for the binary decision is theoretically analyzed. Finally, algorithms for discovering and removing discrimination from a ranked dataset are developed. Experiments using the real-world dataset show the effectiveness of our approaches.
  4. Recent work in fairness in machine learning has proposed adjusting for fairness by equalizing accuracy metrics across groups and has also studied how datasets affected by historical prejudices may lead to unfair decision policies. We connect these lines of work and study the residual unfairness that arises when a fairness-adjusted predictor is not actually fair on the target population due to systematic censoring of training data by existing biased policies. This scenario is particularly common in the same applications where fairness is a concern. We characterize theoretically the impact of such censoring on standard fairness metrics for binary classifiers and provide criteria for when residual unfairness may or may not appear. We prove that, under certain conditions, fairness-adjusted classifiers will in fact induce residual unfairness that perpetuates the same injustices, against the same groups, that biased the data to begin with, thus showing that even state-of-the-art fair machine learning can have a "bias in, bias out" property. When certain benchmark data is available, we show how sample reweighting can estimate and adjust fairness metrics while accounting for censoring. We use this to study the case of Stop, Question, and Frisk (SQF) and demonstrate that attempting to adjust for fairness perpetuatesmore »the same injustices that the policy is infamous for.« less
  5. Fairness in AI and Machine Learning is emerging to be a crucial research area to ensure social good. In contrast to offline working fashions, two research paradigms are devised for online learning: (1) Online Meta-Learning (OML learns good priors over model parameters (or learning to learn) in a sequential setting where tasks are revealed one after another. Although it provides a sub-linear regret bound, such techniques completely ignore the importance of learning with fairness which is a significant hallmark of human intelligence. (2) Online Fairness-Aware Learning that captures many classification problems for which fairness is a concern. But it aims to attain zero-shot generalization without any task-specific adaptation. This, therefore, limits the capability of a model to adapt to newly arrived data. To overcome such issues and bridge the gap, this paper is the first to propose a novel online meta-learning algorithm, namely FFML, which is under the setting of unfairness prevention. The key part of FFML is to learn good priors of an online fair classification model's primal and dual parameters that are associated with the model's accuracy and fairness, respectively. The problem is formulated in the form of a bi-level convex-concave optimization. The theoretic analysis provides sub-linear uppermore »bounds for loss regret and violation of cumulative fairness constraints. The experiments demonstrate the versatility of FFML by applying it to classification on three real-world datasets and show substantial improvements over the best prior work on the tradeoff between fairness and classification accuracy.« less