skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mineral weathering is linked to microbial priming in the critical zone
Abstract Decomposition of soil organic matter (SOM) can be stimulated by fresh organic matter input, a phenomenon known as the ‘priming effect’. Despite its global importance, the relationship of the priming effect to mineral weathering and nutrient release remains unclear. Here we show close linkages between mineral weathering in the critical zone and primed decomposition of SOM. Intensified mineral weathering and rock-derived nutrient release are generally coupled with primed SOM decomposition resulting from “triggered” microbial activity. Fluxes of organic matter products decomposed via priming are linearly correlated with weathering congruency. Weathering congruency influences the formation of organo-mineral associations, thereby modulating the accessibility of organic matter to microbial decomposers and, thus, the priming effect. Our study links weathering with primed SOM decomposition, which plays a key role in controlling soil C dynamics in space and time. These connections represent fundamental links between long-term lithogenic element cycling (= weathering) and rapid turnover of carbon and nutrients (= priming) in soil.  more » « less
Award ID(s):
2012878
PAR ID:
10392203
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inhabiting the interface between plant roots and soil, mycorrhizal fungi play a unique but underappreciated role in soil organic matter (SOM) dynamics. Their hyphae provide an efficient mechanism for distributing plant carbon throughout the soil, facilitating its deposition into soil pores and onto mineral surfaces, where it can be protected from microbial attack. Mycorrhizal exudates and dead tissues contribute to the microbial necromass pool now known to play a dominant role in SOM formation and stabilization. While mycorrhizal fungi lack the genetic capacity to act as saprotrophs, they use several strategies to access nutrients locked in SOM and thereby promote its decay, including direct enzymatic breakdown, oxidation via Fenton chemistry, and stimulation of heterotrophic microorganisms through carbon provision to the rhizosphere. An additional mechanism, competition with free-living saprotrophs, potentially suppresses SOM decomposition, leading to its accumulation. How these various nutrient acquisition strategies differentially influence SOM formation, stabilization, and loss is an area of critical research need. 
    more » « less
  2. Abstract Boreal forests harbor as much carbon (C) as the atmosphere and significant amounts of organic nitrogen (N), the nutrient most likely to limit plant productivity in high‐latitude ecosystems. In the boreal biome, the primary disturbance is wildfire, which consumes plant biomass and soil material, emits greenhouse gasses, and influences long‐term C and N cycling. Climate warming and drying is increasing wildfire severity and frequency and is combusting more soil organic matter (SOM). Combustion of surface SOM exposes deeper older layers of accumulated soil material that previously escaped combustion during past fires, here termed legacy SOM. Postfire SOM decomposition and nutrient availability are determined by these layers, but the drivers of legacy SOM decomposition are unknown. We collected soils from plots after the largest fire year on record in the Northwest Territories, Canada, in 2014. We used radiocarbon dating to measure Δ14C (soil age index), soil extractions to quantify N pools and microbial biomass, and a 90‐day laboratory incubation to measure the potential rate of element mineralization and understand patterns and drivers of legacy SOM C decomposition and N availability. We discovered that bulk soil C age predicted C decomposition, where cumulatively, older soil (approximately −450.0‰) produced 230% less C during the incubation than younger soil (~0.0‰). Soil age also predicted C turnover times, with old soil turnover 10 times slower than young soil. We found respired C was younger than bulk soil C, indicating most C enters and leaves relatively quickly, while the older portion remains a stable C sink. Soil age and other indices were unrelated to N availability, but microbial biomass influenced N availability, with more microbial biomass immobilizing soil N pools. Our results stress the importance of legacy SOM as a stable C sink and highlight that soil age drives the pace and magnitude of soil C contributions to the atmosphere between wildfires. 
    more » « less
  3. Abstract Conceptual and empirical advances in soil biogeochemistry have challenged long-held assumptions about the role of soil micro-organisms in soil organic carbon (SOC) dynamics; yet, rigorous tests of emerging concepts remain sparse. Recent hypotheses suggest that microbial necromass production links plant inputs to SOC accumulation, with high-quality (i.e., rapidly decomposing) plant litter promoting microbial carbon use efficiency, growth, and turnover leading to more mineral stabilization of necromass. We test this hypothesis experimentally and with observations across six eastern US forests, using stable isotopes to measure microbial traits and SOC dynamics. Here we show, in both studies, that microbial growth, efficiency, and turnover are negatively (not positively) related to mineral-associated SOC. In the experiment, stimulation of microbial growth by high-quality litter enhances SOC decomposition, offsetting the positive effect of litter quality on SOC stabilization. We suggest that microbial necromass production is not the primary driver of SOC persistence in temperate forests. Factors such as microbial necromass origin, alternative SOC formation pathways, priming effects, and soil abiotic properties can strongly decouple microbial growth, efficiency, and turnover from mineral-associated SOC. 
    more » « less
  4. Abstract Predicting and mitigating changes in soil carbon (C) stocks under global change requires a coherent understanding of the factors regulating soil organic matter (SOM) formation and persistence, including knowledge of the direct sources of SOM (plants vs. microbes). In recent years, conceptual models of SOM formation have emphasized the primacy of microbial‐derived organic matter inputs, proposing that microbial physiological traits (e.g., growth efficiency) are dominant controls on SOM quantity. However, recent quantitative studies have challenged this view, suggesting that plants make larger direct contributions to SOM than is currently recognized by this paradigm. In this review, we attempt to reconcile these perspectives by highlighting that variation across estimates of plant‐ versus microbial‐derived SOM may arise in part from methodological limitations. We show that all major methods used to estimate plant versus microbial contributions to SOM have substantial shortcomings, highlighting the uncertainty in our current quantitative estimates. We demonstrate that there is significant overlap in the chemical signatures of compounds produced by microbes, plant roots, and through the extracellular decomposition of plant litter, which introduces uncertainty into the use of common biomarkers for parsing plant‐ and microbial‐derived SOM, especially in the mineral‐associated organic matter (MAOM) fraction. Although the studies that we review have contributed to a deeper understanding of microbial contributions to SOM, limitations with current methods constrain quantitative estimates. In light of recent advances, we suggest that now is a critical time to re‐evaluate long‐standing methods, clearly define their limitations, and develop a strategic plan for improving the quantification of plant‐ and microbial‐derived SOM. From our synthesis, we outline key questions and challenges for future research on the mechanisms of SOM formation and stabilization from plant and microbial pathways. 
    more » « less
  5. Abstract Nutrient limitation is widespread in terrestrial ecosystems. Accordingly, representations of nitrogen (N) limitation in land models typically dampen rates of terrestrial carbon (C) accrual, compared with C‐only simulations. These previous findings, however, rely on soil biogeochemical models that implicitly represent microbial activity and physiology. Here we present results from a biogeochemical model testbed that allows us to investigate how an explicit versus implicit representation of soil microbial activity, as represented in the MIcrobial‐MIneral Carbon Stabilization (MIMICS) and Carnegie‐Ames‐Stanford Approach (CASA) soil biogeochemical models, respectively, influence plant productivity, and terrestrial C and N fluxes at initialization and over the historical period. When forced with common boundary conditions, larger soil C pools simulated by the MIMICS model reflect longer inferred soil organic matter (SOM) turnover times than those simulated by CASA. At steady state, terrestrial ecosystems experience greater N limitation when using the MIMICS‐CN model, which also increases the inferred SOM turnover time. Over the historical period, however, warming‐induced acceleration of SOM decomposition over high latitude ecosystems increases rates of N mineralization in MIMICS‐CN. This reduces N limitation and results in faster rates of vegetation C accrual. Moreover, as SOM stoichiometry is an emergent property of MIMICS‐CN, we highlight opportunities to deepen understanding of sources of persistent SOM and explore its potential sensitivity to environmental change. Our findings underscore the need to improve understanding and representation of plant and microbial resource allocation and competition in land models that represent coupled biogeochemical cycles under global change scenarios. 
    more » « less