skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Search of Basement Indicators from Street View Imagery Data: An Investigation of Data Sources and Analysis Strategies
Abstract Street view imagery databases such as Google Street View, Mapillary, and Karta View provide great spatial and temporal coverage for many cities globally. Those data, when coupled with appropriate computer vision algorithms, can provide an effective means to analyse aspects of the urban environment at scale. As an effort to enhance current practices in urban flood risk assessment, this project investigates a potential use of street view imagery data to identify building features that indicate buildings’ vulnerability to flooding (e.g., basements and semi-basements). In particular, this paper discusses (1) building features indicating the presence of basement structures, (2) available imagery data sources capturing those features, and (3) computer vision algorithms capable of automatically detecting the features of interest. The paper also reviews existing methods for reconstructing geometry representations of the extracted features from images and potential approaches to account for data quality issues. Preliminary experiments were conducted, which confirmed the usability of the freely available Mapillary images for detecting basement railings as an example type of basement features, as well as geolocating the features.  more » « less
Award ID(s):
1826134
PAR ID:
10392287
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
KI - Künstliche Intelligenz
Volume:
37
Issue:
1
ISSN:
0933-1875
Page Range / eLocation ID:
p. 41-53
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Image segmentation is a fundamental task that has benefited from recent advances in machine learning. One type of segmentation, of particular interest to computer vision, is that of urban segmentation. Although recent solutions have leveraged on deep neural networks, approaches usually do not consider regularities appearing in facade structures (e.g., windows are often in groups of similar alignment, size, or spacing patterns) as well as additional urban structures such as building footprints and roofs. Moreover, both satellite and street-view images are often noisy and occluded, thus getting the complete structure segmentation from a partial observation is difficult. Our key observations are that facades and other urban structures exhibit regular structures, and additional views are often available. In this paper, we present a novel framework (RFCNet) that consists of three modules to achieve multiple goals. Specifically, we propose Regularization to improve the regularities given an initial segmentation, Fusion that fuses multiple views of the segmentation, and Completion that can infer the complete structure if necessary. Experimental results show that our method outperforms previous state-of-the-art methods quantitatively and qualitatively for multiple facade datasets. Furthermore, by applying our framework to other urban structures (e.g., building footprints and roofs), we demonstrate our approach can be generalized to various pattern types. 
    more » « less
  2. In this paper, a Segment Anything Model (SAM)-based pedestrian infrastructure segmentation workflow is designed and optimized, which is capable of efficiently processing multi-sourced geospatial data, including LiDAR data and satellite imagery data. We used an expanded definition of pedestrian infrastructure inventory, which goes beyond the traditional transportation elements to include street furniture objects that are important for accessibility but are often omitted from the traditional definition. Our contributions lie in producing the necessary knowledge to answer the following three questions. First, how can mobile LiDAR technology be leveraged to produce comprehensive pedestrian-accessible infrastructure inventory? Second, which data representation can facilitate zero-shot segmentation of infrastructure objects with SAM? Third, how well does the SAM-based method perform on segmenting pedestrian infrastructure objects? Our proposed method is designed to efficiently create pedestrian-accessible infrastructure inventory through the zero-shot segmentation of multi-sourced geospatial datasets. Through addressing three research questions, we show how the multi-mode data should be prepared, what data representation works best for what asset features, and how SAM performs on these data presentations. Our findings indicate that street-view images generated from mobile LiDAR point-cloud data, when paired with satellite imagery data, can work efficiently with SAM to create a scalable pedestrian infrastructure inventory approach with immediate benefits to GIS professionals, city managers, transportation owners, and walkers, especially those with travel-limiting disabilities, such as individuals who are blind, have low vision, or experience mobility disabilities. 
    more » « less
  3. Image data plays a pivotal role in the current data-driven era, particularly in applications such as computer vision, object recognition, and facial identification. Google Maps ® stands out as a widely used platform that heavily relies on street view images. To fulfill the pressing need for an effective and distributed mechanism for image data collection, we present a framework that utilizes smart contract technology and open-source robots to gather street-view image sequences. The proposed framework also includes a protocol for maintaining these sequences using a private blockchain capable of retaining different versions of street views while ensuring the integrity of collected data. With this framework, Google Maps ® data can be securely collected, stored, and published on a private blockchain. By conducting tests with actual robots, we demonstrate the feasibility of the framework and its capability to seamlessly upload privately maintained blockchain image sequences to Google Maps ® using the Google Street View ® Publish API. 
    more » « less
  4. In the past few years, automatic building detection in aerial images has become an emerging field in computer vision. Detecting the specific types of houses will provide information in urbanization, change detection, and urban monitoring that play increasingly important roles in modern city planning and natural hazard preparedness. In this paper, we demonstrate the effectiveness of detecting various types of houses in aerial imagery using Faster Region-based Convolutional Neural Network (Faster-RCNN). After formulating the dataset and extracting bounding-box information, pre-trained ResNet50 is used to get the feature maps. The fully convolutional Region Proposal Network (RPN) first predicts the bounds and objectness score of objects (in this case house) from the feature maps. Then, the Region of Interest (RoI) pooling layer extracts interested regions to detect objects that are present in the images. To the best of our knowledge, this is the first attempt at detecting houses using Faster R-CNN that has achieved satisfactory results. This experiment opens a new path to conduct and extent the works not only for civil and environmental domain but also other applied science disciplines. 
    more » « less
  5. New data sources and AI methods for extracting information are increasingly abundant and relevant to decision-making across societal applications. A notable example is street view imagery, available in over 100 countries, and purported to inform built environment interventions (e.g., adding sidewalks) for community health outcomes. However, biases can arise when decision-making does not account for data robustness or relies on spurious correlations. To investigate this risk, we analyzed 2.02 million Google Street View (GSV) images alongside health, demographic, and socioeconomic data from New York City. Findings demonstrate robustness challenges; built environment characteristics inferred from GSV labels at the intracity level often do not align with ground truth. Moreover, as average individual-level behavior of physical inactivity significantly mediates the impact of built environment features by census tract, intervention on features measured by GSV would be misestimated without proper model specification and consideration of this mediation mechanism. Using a causal framework accounting for these mediators, we determined that intervening by improving 10% of samples in the two lowest tertiles of physical inactivity would lead to a 4.17 (95% CI 3.84–4.55) or 17.2 (95% CI 14.4–21.3) times greater decrease in the prevalence of obesity or diabetes, respectively, compared to the same proportional intervention on the number of crosswalks by census tract. This study highlights critical issues of robustness and model specification in using emergent data sources, showing the data may not measure what is intended, and ignoring mediators can result in biased intervention effect estimates. 
    more » « less