Work-related musculoskeletal disorders (WMSDs) are a leading cause of injury for workers who are performing physically demanding and repetitive construction tasks. With recent advances in robotics, wearable robots are introduced into the construction industry to mitigate the risk of WMSDs by correcting the workers’ postures and reducing the load exerted on their body joints. While wearable robots promise to reduce the muscular and physical demands on workers to perform tasks, there is a lack of understanding of the impact of wearable robots on worker ergonomics. This lack of understanding may lead to new ergonomic injuries for worker swearing exoskeletons. To bridge this gap, this study aims to assess the workers’ ergonomic risk when using a wearable robot (back-support exoskeleton) in one of the most common construction tasks, material handling. In this research, a vision-based pose estimation algorithm was developed to estimate the pose of the worker while wearing a back-support exoskeleton. As per the estimated pose, joint angles between connected body parts were calculated. Then, the worker’s ergonomic risk was assessed from the calculated angles based on the Rapid Entire Body Assessment (REBA) method. Results showed that using the back-support exoskeleton reduced workers’ ergonomic risk by 31.7% by correcting awkward postures of the trunk and knee during material handling tasks, compared to not using the back-support exoskeleton. The results are expected to facilitate the implementation of wearable robots in the construction industry.
more »
« less
Studying the Effects of Back-Support Exoskeletons on Workers’ Cognitive Load during Material Handling Tasks
Exoskeletons, also known as wearable robots, are being studied as a potential solution to reduce the risk of work-related musculoskeletal disorders (WMSDs) in construction. The exoskeletons can help enhance workers’ postures and provide lift support, reducing the muscular demands on workers while executing construction tasks. Despite the potential of exoskeletons inreducing the risk of WMSDs, there is a lack of understanding about the potential effects ofexoskeletons on workers’ psychological states. This lack of knowledge raises concerns thatexoskeletons may lead to psychological risks, such as cognitive overload, among workers. Tobridge this gap, this study aims to assess the impact of back-support exoskeletons (BSE) onworkers’ cognitive load during material lifting tasks. To accomplish this, a physiologically basedcognitive load assessment framework was developed. This framework used wearable biosensorsto capture the physiological signals of workers and applied Autoencoder and Ensemble Learningtechniques to train a machine learning classifier based on the signals to estimate cognitive loadlevels of workers while wearing the exoskeleton. Results showed that using BSE increasedworkers’ cognitive load by 33% compared to not using it during material handling tasks. Thefindings can aid in the design and implementation of exoskeletons in the construction industry.
more »
« less
- Award ID(s):
- 2410255
- PAR ID:
- 10517153
- Publisher / Repository:
- American Society of Civil Engineers
- Date Published:
- Journal Name:
- Construction Research Congress 2024
- ISBN:
- 9780784485262
- Page Range / eLocation ID:
- 659 to 669
- Format(s):
- Medium: X
- Location:
- Des Moines, Iowa
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent research suggests construction workers fall prey to the cognitive biases of risk compensation, wherein workers offset safety improvements by taking more risks. Parallel previous literature indicates that time pressure and mental load may increase workers’ arousal and stress. However, it is unclear whether time, productivity, and/or cognitive demands can worsen risk compensation behaviors by stimulating workers to make riskier decisions to complete tasks faster. Combining a multi-modal mixed-reality environment with wearable neuro-psychophysiological sensors, this study examines changes in safety and task performance for high-risk electrical-line tasks simulated under time/performance pressure and cognitive demand. The results show risk-compensation is in play as subjects over-rely on safety technologies and maintain their risk perception even while undertaking more risks to adapt to increased time pressure and/or cognitive demand. This paper contributes to body of knowledge by affecting safety-training approaches and the controls needed when providing workers with safety protection and new technological advances.more » « less
-
Active exoskeletons are emerging as ergonomic solutions in the construction sector to reduce work-related musculoskeletal injuries. While the benefits of active exoskeletons are promising, they can also cause increased muscle activity, leading to local muscular fatigue. This study aimed to examine the impact of the active exoskeleton system on the muscular activity of construction workers during common construction activities. Ten subjects completed material handling tasks under two weight conditions (10 and 30 lbs) in a lab-controlled environment, with and without using an active exoskeleton. Portable electromyography (EMG) sensors were used to measure lumbar erector spinae (LES) muscle activity in each condition. Four descriptive statistics features in the time and frequency domains were extracted from the collected signals. Results of the t-test showed a significant difference in the physiological metrics extracted from the subjects’ EMG signals of the LES muscle. Findings demonstrated that using active exoskeletons reduces the internal muscle force in the lower back regions of construction workers.more » « less
-
Emergency response (ER) workers perform extremely demanding physical and cognitive tasks that can result in serious injuries and loss of life. Human augmentation technologies have the potential to enhance physical and cognitive work-capacities, thereby dramatically transforming the landscape of ER work, reducing injury risk, improving ER, as well as helping attract and retain skilled ER workers. This opportunity has been significantly hindered by the lack of high-quality training for ER workers that effectively integrates innovative and intelligent augmentation solutions. Hence, new ER learning environments are needed that are adaptive, affordable, accessible, and continually available for reskilling the ER workforce as technological capabilities continue to improve. This article presents the research considerations in the design and integration of use-inspired exoskeletons and augmented reality technologies in ER processes and the identification of unique cognitive and motor learning needs of each of these technologies in context-independent and ER-relevant scenarios. We propose a human-centered artificial intelligence (AI) enabled training framework for these technologies in ER. Finally, how these human-centered training requirements for nascent technologies are integrated in an intelligent tutoring system that delivers across tiered access levels, covering the range of virtual, to mixed, to physical reality environments, is discussed.more » « less
-
Behrend, Tara; Ravid, Daniel; Rudolph, Cort W (Ed.)Occupational exoskeletons are wearable devices that can augment a human worker's physical abilities. They are designed to protect the worker from physical stress and strain due to physically demanding tasks. They are also designed to increase a worker's ability to perform these tasks with less effort or to accommodate tasks with greater physical loads. There is a labor shortage for many physically demanding jobs in manufacturing, construction, agriculture, and healthcare. Occupational exoskeletons may enable more women and older workers to qualify for these jobs. Literature reviews on occupational exoskeletons and workplace diversity and inclusion were conducted to explore how this technology can facilitate diversity and inclusion goals. Future research directions are discussed for exoskeleton design and how they might affect work identities and perceptions of organizational inclusion for women and older workers who pursue vocations in physically demanding work.more » « less
An official website of the United States government

