A Monte Carlo analysis of a contingency optimal guidance strategy is conducted. The guidance strategy is applied to a Mars Entry problem in which it is assumed that the surface level atmospheric density is a random variable. First, a nominal guidance strategy is employed such that the optimal control problem is re-solved at constant guidance cycles. When the trajectory lies within a particular distance from a path constraint boundary, the nominal guidance strategy is replaced with a contingency guidance strategy, where the contingency guidance strategy attempts to prevent a violation in the the relevant path constraint. The contingency guidance strategy utilizes the reference optimal control problem formulation, but modifies the objective functional to maximize the margin between the path constraint limit and path constraint function value. The ability of the contingency guidance strategy to prevent violations in the path constraints is assessed via a Monte Carlo simulation.
more »
« less
A Robust Optimal Guidance Strategy for Mars Entry
A robust optimal guidance strategy is proposed. The guidance strategy is designed to reduce the possibility of violations in inequality path constraints in the presence of modeling errors and perturbations. The guidance strategy solves a constrained nonlinear optimal control problem at the start of every guidance cycle. In order to reduce the possibility of path constraint violations, the objective functional for the optimal control problem is modified at the start of a guidance cycle if it is found that the solution lies within a user-specified threshold of a path constraint limit. The modified objective functional is designed such that it maximizes the margin in the solution relative to the path constraint limit that could potentially be violated in the future. The method is validated on a path-constrained Mars entry problem where the reference model and the perturbed model differ in their atmospheric density. It is found for the example studied that the approach significantly improves the path constraint margin and maintains feasibility relative to a guidance approach that maintains the original objective functional for each guidance update.
more »
« less
- Award ID(s):
- 2031213
- PAR ID:
- 10392312
- Publisher / Repository:
- American Astronautical Society
- Date Published:
- Journal Name:
- 2022 AAS/AIAA Astrodynamics Specialist Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A Monte Carlo analysis of a contingency optimal guidance strategy is conducted. The guidance strategy is applied to a Mars Entry problem in which it is assumed that the surface level atmospheric density is a random variable. First, a nominal guidance strategy is employed such that the optimal control problem is re-solved at constant guidance cycles. When the trajectory lies within a particular distance from a path constraint boundary, the nominal guidance strategy is replaced with a contingency guidance strategy, where the contingency guidance strategy attempts to prevent a violation in the the relevant path constraint. The contingency guidance strategy utilizes the reference optimal control problem formulation, but modifies the objective functional to maximize the margin between the path constraint limit and path constraint function value. The ability of the contingency guidance strat- egy to prevent violations in the path constraints is assessed via a Monte Carlo simulation.more » « less
-
N/A (Ed.)Abstract—The Resource Constrained Shortest Path Problem (RCSPP) seeks to determine a minimum-cost path between a start and a goal location while ensuring that one or multiple types of resource consumed along the path do not exceed their limits. This problem is often solved on a graph where a path is incrementally built from the start towards the goal during the search. RCSPP is computationally challenging as comparing these partial solution paths is based on multiple criteria (i.e., the accumulated cost and resource along the path), and in general, there does not exist a single path that optimizes all criteria simultaneously. Consequently, the search needs to maintain and explore a large number of partial paths in order to find an optimal solution. While a variety of algorithms have been developed to solve RCSPP, they either have little consideration about efficiently comparing and maintaining the partial paths, which reduces their overall runtime efficiency, or are restricted to handle only one resource constraint as opposed to multiple resource constraints. This paper develops Enhanced Resource Constrained A* (ERCA*), a fast A*-based algorithm that can find an optimal solution while satisfying multiple resource constraints. ERCA* leverages both the recent advances in multi-objective path planning to efficiently compare and maintain partial paths, and techniques from the existing RCSPP literature. Furthermore, ERCA* has a functional parameter to broker a trade-off between solution quality and runtime efficiency. The results show ERCA* often runs several orders of magnitude faster than an existing leading algorithm for RCSPP.more » « less
-
The problem of guidance and control of an air-to-surface low-altitude skid-to-turn vehicle is considered. The objective is to steer the vehicle to a ground target from an initial state such that the vehicle remains at a constant low altitude for as long as possible and performs a bunt maneuver (negative sensed-acceleration load) rapidly at the end of the trajectory in order to attain terminal target conditions. The vehicle is modeled as a point mass in motion over a flat Earth, and the vehicle is controlled using thrust magnitude, angle of attack, and sideslip angle. The guidance and control problem is posed as a decreasing-horizon optimal control problem and is re-solved numerically at constant guidance cycles. The work described in this paper is the second part of a two-part sequence on trajectory optimization and guidance of a skid-to-turn vehicle. In both cases, the objective is to minimize the time taken by the vehicle to complete a bunt maneuver subject to the following constraints: dynamic, boundary, state, path, and interior-point event constraints. In the second part of this two-part study, a numerical guidance law is employed to re-solve the optimal control problem on a shrinking horizon. An assessment is made as to the time required to re-solve the optimal control problem both in the absence and presence of a time delay, where the time delay is the amount of time required to solve the numerical approximation of the optimal control problem at the start of each guidance cycle. The results of this study identify that in the absence and presence of a time delay, the size of the mesh on subsequent guidance cycles decreases, the time required to solve the reduced-horizon optimal control problem is small compared to the guidance cycle duration time, and the terminal conditions are met with sufficient accuracy. Thus, the results show that the guidance law presented in this paper has the potential to solve optimal control problems in real-time.more » « less
-
null (Ed.)Abstract A novel, exact algorithm is presented to solve the path planning problem that involves finding the shortest collision-free path from a start to a goal point in a two-dimensional environment containing convex and non-convex obstacles. The proposed algorithm, which is called the shortest possible path (SPP) algorithm, constructs a network of lines connecting the vertices of the obstacles and the locations of the start and goal points which is smaller than the network generated by the visibility graph. Then it finds the shortest path from start to goal point within this network. The SPP algorithm generates a safe, smooth and obstacle-free path that has a desired distance from each obstacle. This algorithm is designed for environments that are populated sparsely with convex and nonconvex polygonal obstacles. It has the capability of eliminating some of the polygons that do not play any role in constructing the optimal path. It is proven that the SPP algorithm can find the optimal path in O(nn r2 ) time, where n is the number of vertices of all polygons and n ̓ is the number of vertices that are considered in constructing the path network (n ̓ ≤ n). The performance of the algorithm is evaluated relative to three major classes of algorithms: heuristic, probabilistic, and classic. Different benchmark scenarios are used to evaluate the performance of the algorithm relative to the first two classes of algorithms: GAMOPP (genetic algorithm for multi-objective path planning), a representative heuristic algorithm, as well as RRT (rapidly-exploring random tree) and PRM (probabilistic road map), two well-known probabilistic algorithms. Time complexity is known for classic algorithms, so the presented algorithm is compared analytically.more » « less
An official website of the United States government

