In multi-objective search, edges are annotated with cost vectors consisting of multiple cost components. A path dominates another path with the same start and goal vertices iff the component-wise sum of the cost vectors of the edges of the former path is 'less than' the component-wise sum of the cost vectors of the edges of the latter path. The Pareto-optimal solution set is the set of all undominated paths from a given start vertex to a given goal vertex. Its size can be exponential in the size of the graph being searched, which makes multi-objective search time-consuming. In this paper, we therefore study how to find an approximate Pareto-optimal solution set for a user-provided vector of approximation factors. The size of such a solution set can be significantly smaller than the size of the Pareto-optimal solution set, which enables the design of approximate multi-objective search algorithms that are efficient and produce small solution sets. We present such an algorithm in this paper, called A*pex. A*pex builds on PPA*, a state-of-the-art approximate bi-objective search algorithm (where there are only two cost components) but (1) makes PPA* more efficient for bi-objective search and (2) generalizes it to multi-objective search for any number of cost components. We first analyze the correctness of A*pex and then experimentally demonstrate its efficiency advantage over existing approximate algorithms for bi- and tri-objective search.
more »
« less
A New Approach for the Resource Constrained Shortest Path Problem
Abstract—The Resource Constrained Shortest Path Problem
(RCSPP) seeks to determine a minimum-cost path between a
start and a goal location while ensuring that one or multiple
types of resource consumed along the path do not exceed
their limits. This problem is often solved on a graph where
a path is incrementally built from the start towards the goal
during the search. RCSPP is computationally challenging as
comparing these partial solution paths is based on multiple
criteria (i.e., the accumulated cost and resource along the path),
and in general, there does not exist a single path that optimizes
all criteria simultaneously. Consequently, the search needs to
maintain and explore a large number of partial paths in order to
find an optimal solution. While a variety of algorithms have been
developed to solve RCSPP, they either have little consideration
about efficiently comparing and maintaining the partial paths,
which reduces their overall runtime efficiency, or are restricted
to handle only one resource constraint as opposed to multiple
resource constraints. This paper develops Enhanced Resource
Constrained A* (ERCA*), a fast A*-based algorithm that can find
an optimal solution while satisfying multiple resource constraints.
ERCA* leverages both the recent advances in multi-objective
path planning to efficiently compare and maintain partial paths,
and techniques from the existing RCSPP literature. Furthermore,
ERCA* has a functional parameter to broker a trade-off between
solution quality and runtime efficiency. The results show ERCA*
often runs several orders of magnitude faster than an existing
leading algorithm for RCSPP.
more »
« less
- Award ID(s):
- 2120529
- NSF-PAR ID:
- 10466861
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Intelligent Transportation Systems
- ISSN:
- 0000-0000
- Subject(s) / Keyword(s):
- Index Terms—Path Planning, Heuristic Search, Shortest Path
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many interesting search problems can be formulated as bi-objective search problems, that is, search problems where two kinds of costs have to be minimized, for example, travel distance and time for transportation problems. Bi-objective search algorithms have to maintain the set of undominated paths from the start state to each state to compute the set of paths from the start state to the goal state that are not dominated by some other path from the start state to the goal state (called the Pareto-optimal solution set). Each time they find a new path to a state s, they perform a dominance check to determine whether this path dominates any of the previously found paths to s or whether any of the previously found paths to s dominates this path. Existing algorithms do not perform these checks efficiently. On the other hand, our Bi-Objective A* (BOA*) algorithm requires only constant time per check. In our experimental evaluation, we show that BOA* can run an order of magnitude (or more) faster than state-of-the-art bi-objective search algorithms, such as NAMOA*, NAMOA*dr, Bi-Objective Dijkstra, and Bidirectional Bi-Objective Dijkstra.more » « less
-
NA (Ed.)This work addresses a Multi-Objective Shortest Path Problem (MO-SPP) on a graph where the goal is to find a set of Pareto-optimal solutions from a start node to a destination in the graph. A family of approaches based on MOA* have been developed to solve MO-SPP in the literature. Typically, these approaches maintain a “frontier” set at each node during the search process to keep track of the non-dominated, partial paths to reach that node. This search process becomes computationally expensive when the number of objectives increases as the number of Pareto-optimal solutions becomes large. In this work, we introduce a new method to efficiently maintain these frontiers for multiple objectives by incrementally constructing balanced binary search trees within the MOA* search framework. We first show that our approach correctly finds the Pareto-optimal front, and then provide extensive simulation results for problems with three, four and five objectives to show that our method runs faster than existing techniques by up to an order of magnitude.more » « less
-
We consider a variant of the Multi-Agent Path-Finding problem that seeks both task assignments and collision-free paths for a set of agents navigating on a graph, while minimizing the sum of costs of all agents. Our approach extends Conflict-Based Search (CBS), a framework that has been previously used to find collision-free paths for a given fixed task assignment. Our approach is based on two key ideas: (i) we operate on a search forest rather than a search tree; and (ii) we create the forest on demand, avoiding a factorial explosion of all possible task assignments. We show that our new algorithm, CBS-TA, is complete and optimal. The CBS framework allows us to extend our method to ECBS-TA, a bounded suboptimal version. We provide extensive empirical results comparing CBS-TA to task assignment followed by CBS, Conflict-Based Min-Cost-Flow (CBM), and an integer linear program (ILP) solution, demonstrating the advantages of our algorithm. Our results highlight a significant advantage in jointly optimizing the task assignment and path planning for very dense cases compared to the traditional method of solving those two problems independently. For large environments with many robots we show that the traditional approach is reasonable, but that we can achieve similar results with the same runtime but stronger suboptimality guarantees.more » « less
-
Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executablemore » « less