skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian hierarchical weighting adjustment and survey inference
We combine weighting and Bayesian prediction in a unified approach to survey inference. The general principles of Bayesian analysis imply that models for survey outcomes should be conditional on all variables that affect the probability of inclusion. We incorporate all the variables that are used in the weighting adjustment under the framework of multilevel regression and poststratification, as a byproduct generating model-based weights after smoothing. We improve small area estimation by dealing with different complex issues caused by real-life applications to obtain robust inference at finer levels for subdomains of interest. We investigate deep interactions and introduce structured prior distributions for smoothing and stability of estimates. The computation is done via Stan and is implemented in the open-source R package rstanarm and available for public use. We evaluate the design-based properties of the Bayesian procedure. Simulation studies illustrate how the model-based prediction and weighting inference can outperform classical weighting. We apply the method to the New York Longitudinal Study of Wellbeing. The new approach generates smoothed weights and increases efficiency for robust finite population inference, especially for subsets of the population.  more » « less
Award ID(s):
1926578
PAR ID:
10392346
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Survey methodology
Volume:
46
Issue:
2
ISSN:
0714-0045
Page Range / eLocation ID:
181-214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this article, we develop a weighted approach to estimation for right-censored time to event data in the presence of external predictions available from a prediction model. There are several advantages to the proposed approach. First, the method allows for arbitrary forms for the external prediction model. Second, the methodology can be fit easily using standard software packages that allow for subject-specific weights. Third, all that is needed from the external models are access to predictions and not the actually prediction equation. A complication is that inference becomes challenging, so we develop new theoretical results along with a perturbation-based method for inference. The methodology is applied to three publicly available datasets. 
    more » « less
  2. Abstract Bias in causal comparisons has a correspondence with distributional imbalance of covariates between treatment groups. Weighting strategies such as inverse propensity score weighting attempt to mitigate bias by either modeling the treatment assignment mechanism or balancing specified covariate moments. This article introduces a new weighting method, called energy balancing, which instead aims to balance weighted covariate distributions. By directly targeting distributional imbalance, the proposed weighting strategy can be flexibly utilized in a wide variety of causal analyses without the need for careful model or moment specification. Our energy balancing weights (EBW) approach has several advantages over existing weighting techniques. First, it offers a model-free and robust approach for obtaining covariate balance that does not require tuning parameters, obviating the need for modeling decisions of secondary nature to the scientific question at hand. Second, since this approach is based on a genuine measure of distributional balance, it provides a means for assessing the balance induced by a given set of weights for a given dataset. We demonstrate the effectiveness of this EBW approach in a suite of simulation experiments, and in studies on the safety of right heart catheterization and on three additional studies using electronic health record data. 
    more » « less
  3. Discovering governing physical laws from noisy data is a grand challenge in many science and engineering research areas. We present a new approach to data-driven discovery of ordinary differential equations (ODEs) and partial differential equations (PDEs), in explicit or implicit form. We demonstrate our approach on a wide range of problems, including shallow water equations and Navier–Stokes equations. The key idea is to select candidate terms for the underlying equations using dimensional analysis, and to approximate the weights of the terms with error bars using our threshold sparse Bayesian regression. This new algorithm employs Bayesian inference to tune the hyperparameters automatically. Our approach is effective, robust and able to quantify uncertainties by providing an error bar for each discovered candidate equation. The effectiveness of our algorithm is demonstrated through a collection of classical ODEs and PDEs. Numerical experiments demonstrate the robustness of our algorithm with respect to noisy data and its ability to discover various candidate equations with error bars that represent the quantified uncertainties. Detailed comparisons with the sequential threshold least-squares algorithm and the lasso algorithm are studied from noisy time-series measurements and indicate that the proposed method provides more robust and accurate results. In addition, the data-driven prediction of dynamics with error bars using discovered governing physical laws is more accurate and robust than classical polynomial regressions. 
    more » « less
  4. Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmeasured cluster-level covariates that are related to both the treatment assignment and outcome. When such unmeasured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity score estimation under the latent ignorable treatment assignment mechanism, i. e., the treatment-outcome relationship is unconfounded given the observed covariates and the latent cluster-specific confounders. We impose novel balance constraints which imply exact balance of the observed confounders and the unobserved cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover, the proposed weighting method can be combined with sampling weights for an integrated solution to handle confounding and sampling designs for causal inference with clustered survey data. In simulation studies, we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania. 
    more » « less
  5. Abstract We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning. These popular doubly robust estimators combine outcome modelling with balancing weights—weights that achieve covariate balance directly instead of estimating and inverting the propensity score. When the outcome and weighting models are both linear in some (possibly infinite) basis, we show that the augmented estimator is equivalent to a single linear model with coefficients that combine those of the original outcome model with those from unpenalized ordinary least-squares (OLS). Under certain choices of regularization parameters, the augmented estimator in fact collapses to the OLS estimator alone. We then extend these results to specific outcome and weighting models. We first show that the augmented estimator that uses (kernel) ridge regression for both outcome and weighting models is equivalent to a single, undersmoothed (kernel) ridge regression—implying a novel analysis of undersmoothing. When the weighting model is instead lasso-penalized, we demonstrate a familiar ‘double selection’ property. Our framework opens the black box on this increasingly popular class of estimators, bridges the gap between existing results on the semiparametric efficiency of undersmoothed and doubly robust estimators, and provides new insights into the performance of augmented balancing weights. 
    more » « less