skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy balancing of covariate distributions
Abstract Bias in causal comparisons has a correspondence with distributional imbalance of covariates between treatment groups. Weighting strategies such as inverse propensity score weighting attempt to mitigate bias by either modeling the treatment assignment mechanism or balancing specified covariate moments. This article introduces a new weighting method, called energy balancing, which instead aims to balance weighted covariate distributions. By directly targeting distributional imbalance, the proposed weighting strategy can be flexibly utilized in a wide variety of causal analyses without the need for careful model or moment specification. Our energy balancing weights (EBW) approach has several advantages over existing weighting techniques. First, it offers a model-free and robust approach for obtaining covariate balance that does not require tuning parameters, obviating the need for modeling decisions of secondary nature to the scientific question at hand. Second, since this approach is based on a genuine measure of distributional balance, it provides a means for assessing the balance induced by a given set of weights for a given dataset. We demonstrate the effectiveness of this EBW approach in a suite of simulation experiments, and in studies on the safety of right heart catheterization and on three additional studies using electronic health record data.  more » « less
Award ID(s):
2316012 2210729 2004571
PAR ID:
10518503
Author(s) / Creator(s):
;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Journal of Causal Inference
Volume:
12
Issue:
1
ISSN:
2193-3685
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marginal structural models (MSMs) can be used to estimate the causal effect of a potentially time-varying treatment in the presence of time-dependent confounding via weighted regression. The standard approach of using inverse probability of treatment weighting (IPTW) can be sensitive to model misspecification and lead to high-variance estimates due to extreme weights. Various methods have been proposed to partially address this, including covariate balancing propensity score (CBPS) to mitigate treatment model misspecification, and truncation and stabilized-IPTW (sIPTW) to temper extreme weights. In this article, we present kernel optimal weighting (KOW), a convex-optimization-based approach that finds weights for fitting the MSMs that flexibly balance time-dependent confounders while simultaneously penalizing extreme weights, directly addressing the above limitations. We further extend KOW to control for informative censoring. We evaluate the performance of KOW in a simulation study, comparing it with IPTW, sIPTW, and CBPS. We demonstrate the use of KOW in studying the effect of treatment initiation on time-to-death among people living with human immunodeficiency virus and the effect of negative advertising on elections in the United States. 
    more » « less
  2. Abstract Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically estimate effects under the assumption that all confounders are measured. In this paper, we develop a sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that solves an optimization problem to obtain weights that directly minimizes covariate imbalance. In particular, we adapt a sensitivity analysis framework using the percentile bootstrap for a broad class of balancing weights estimators. We prove that the percentile bootstrap procedure can, with only minor modifications, yield valid confidence intervals for causal effects under restrictions on the level of unmeasured confounding. We also propose an amplification—a mapping from a one-dimensional sensitivity analysis to a higher dimensional sensitivity analysis—to allow for interpretable sensitivity parameters in the balancing weights framework. We illustrate our method through extensive real data examples. 
    more » « less
  3. Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmeasured cluster-level covariates that are related to both the treatment assignment and outcome. When such unmeasured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity score estimation under the latent ignorable treatment assignment mechanism, i. e., the treatment-outcome relationship is unconfounded given the observed covariates and the latent cluster-specific confounders. We impose novel balance constraints which imply exact balance of the observed confounders and the unobserved cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover, the proposed weighting method can be combined with sampling weights for an integrated solution to handle confounding and sampling designs for causal inference with clustered survey data. In simulation studies, we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania. 
    more » « less
  4. A common goal in observational research is to estimate marginal causal effects in the presence of confounding variables. One solution to this problem is to use the covariate distribution to weight the outcomes such that the data appear randomized. The propensity score is a natural quantity that arises in this setting. Propensity score weights have desirable asymptotic properties, but they often fail to adequately balance covariate data in finite samples. Empirical covariate balancing methods pose as an appealing alternative by exactly balancing the sample moments of the covariate distribution. With this objective in mind, we propose a framework for estimating balancing weights by solving a constrained convex program, where the criterion function to be optimized is a Bregman distance. We then show that the different distances in this class render identical weights to those of other covariate balancing methods. A series of numerical studies are presented to demonstrate these similarities. 
    more » « less
  5. Abstract We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning. These popular doubly robust estimators combine outcome modelling with balancing weights—weights that achieve covariate balance directly instead of estimating and inverting the propensity score. When the outcome and weighting models are both linear in some (possibly infinite) basis, we show that the augmented estimator is equivalent to a single linear model with coefficients that combine those of the original outcome model with those from unpenalized ordinary least-squares (OLS). Under certain choices of regularization parameters, the augmented estimator in fact collapses to the OLS estimator alone. We then extend these results to specific outcome and weighting models. We first show that the augmented estimator that uses (kernel) ridge regression for both outcome and weighting models is equivalent to a single, undersmoothed (kernel) ridge regression—implying a novel analysis of undersmoothing. When the weighting model is instead lasso-penalized, we demonstrate a familiar ‘double selection’ property. Our framework opens the black box on this increasingly popular class of estimators, bridges the gap between existing results on the semiparametric efficiency of undersmoothed and doubly robust estimators, and provides new insights into the performance of augmented balancing weights. 
    more » « less