skip to main content


Title: Historical biogeographic range shifts and the influence of climate change on ocean quahogs ( Arctica islandica ) on the Mid-Atlantic Bight
The Holocene, starting approximately 11.7 cal ka, is characterized by distinct periods of warming and cooling. Despite these known climate events, few temperature proxy data exist in the northwestern Atlantic Ocean. One potential record of past water temperatures is preserved in the marine fossil record. Shell growth of ocean quahogs ( Arctica islandica), a long-lived bivalve, can provide records of past environmental conditions. Arctica islandica habitat includes the Mid-Atlantic Bight (MAB), an area rapidly warming as a consequence of climate change. The Cold Pool, a bottom-trapped water mass on the outer continental shelf within the MAB, rarely rises above 15°C. Ocean quahogs inhabiting the MAB are confined to the Cold Pool as a consequence of an upper thermal limit for the species of ~15–16°C. Recently, dead A. islandica shells were discovered outside of the species’ present-day range, suggesting that the Cold Pool once extended further inshore than now observed. Shells collected off the Delmarva Peninsula were radiocarbon-dated to identify the timing of habitation and biogeographic range shifts. Dead shell ages range from 4400 to 60 cal BP, including ages representing four major Holocene cold events. Nearly absent from this record are shells from the intermittent warm periods. Radiocarbon ages indicate that ocean quahogs, contemporaneous with the present MAB populations, were living inshore of their present-day distribution during the past 200 years. This overlap suggests the initiation of a recent biogeographic range shift that occurred as a result of a regression of the Cold Pool following the Little Ice Age.  more » « less
Award ID(s):
1841435
NSF-PAR ID:
10392451
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Holocene
Volume:
32
Issue:
9
ISSN:
0959-6836
Page Range / eLocation ID:
964 to 976
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Holocene, starting approximately 11.7 cal ka, is characterized by distinct periods of warming and cooling. Despite these known climate events, few temperature proxy data exist in the northwestern Atlantic Ocean. One potential record of past water temperatures is preserved in the marine fossil record. Shell growth of ocean quahogs (Arctica islandica), a long-lived bivalve, can provide records of past environmental conditions. Arctica islandica habitat includes the Mid-Atlantic Bight (MAB), an area rapidly warming as a consequence of climate change. The Cold Pool, a bottom-trapped water mass on the outer continental shelf within the MAB, rarely rises above 15°C. Ocean quahogs inhabiting the MAB are confined to the Cold Pool as a consequence of an upper thermal limit for the species of ~15–16°C. Recently, dead A. islandica shells were discovered outside of the species’ present-day range, suggesting that the Cold Pool once extended further inshore than now observed. Shells collected off the Delmarva Peninsula were radiocarbon-dated to identify the timing of habitation and biogeographic range shifts. Dead shell ages range from 4400 to 60 cal BP, including ages representing four major Holocene cold events. Nearly absent from this record are shells from the intermittent warm periods. Radiocarbon ages indicate that ocean quahogs, contemporaneous with the present MAB populations, were living inshore of their present-day distribution during the past 200 years. This overlap suggests the initiation of a recent biogeographic range shift that occurred as a result of a regression of the Cold Pool following the Little Ice Age. 
    more » « less
  2. ABSTRACT

    Taphonomic indicators are often used to assess time-since-death of skeletal remains. These indicators frequently have limited accuracy, resulting in the reliance of other methodologies to age remains. Arctica islandica, commonly known as the ocean quahog, is a relatively widespread bivalve in the North Atlantic, with an extended lifespan that often exceeds two hundred years; hence, their shells are often studied to evaluate climate change over time. This report evaluates taphonomic age using 117 A. islandica shells collected from the Mid-Atlantic Bight offshore of the Delmarva Peninsula with radiocarbon dates extending from 60–4,400 cal years BP. These shells had varying degrees of taphonomic alteration produced by discoloration and degradation of periostracum. To determine if a relationship exists between taphonomic condition and time-since-death, radiocarbon ages were compared with the amount of remaining periostracum and type of discoloration. Old shells (individuals that died long ago) were discolored orange with no periostracum while younger shells (individuals that died more recently) had their original color, with some periostracum. Both the disappearance of periostracum and appearance of discoloration followed a logistic process, with 50% of shells devoid of periostracum and 50% discolored in about 1,000 years. The logistic form of long-term taphonomic processes degrading shell condition is first reported here, as are the longest time series for taphonomic processes in death assemblages within the Holocene record. This relationship can be utilized for triage when deciding what shells to age from time-averaged assemblages, permitting more efficient application of expensive methods of aging such as radiocarbon dating.

     
    more » « less
  3. Abstract The Gulf of Maine and surrounding western North Atlantic shelf are some of the fastest warming regions of the worlds oceans. The lack of long-term observational records from this area inhibits the ability to assess the timing and initial causes of this warming and consequently accurately predict future changes to this ecologically and economically important region. Here we present oxygen, nitrogen, and radiocarbon isotope data measured in Arctica islandica shells collected in the western North Atlantic to better understand the past temperature and ocean circulation variability of the region over the last 300 years. We combine these results with output from the Community Earth System Model Last Millennium Ensemble simulations to assess the temporal and spatial context of these isotope records. We find that the isotope records capture the end and reversal of a millennium-scale cooling trend in the Gulf of Maine. Last Millennium Ensemble single-forcing simulations indicate that this cooling trend appears to be largely driven by volcanic forcing. The nitrogen and radiocarbon records indicate that ocean circulation is in part driving the reconstructed hydrographic changes, pointing to a potential role of the Atlantic Meridional Overturning Circulation in regulating Gulf of Maine temperatures as suggested by the Last Millennium Ensemble simulations. Both isotope and model results suggest that the Gulf of Maine began to warm in the late 19th century, ultimately driven by increased greenhouse gas forcing. Plain-language Summary The Gulf of Maine, located off of the Eastern Coast of the United States, has experienced significant temperature increases recently. Because the instrumental record only began in 1905, we do not have a good idea of when this warming began and what may have initially caused the warming. Here, we analyze the chemistry of clam shells, which have grown in the Gulf of Maine for hundreds of years, to infer past changes in ocean temperatures and water properties. We combine these results with output from a climate model to reveal that the temperatures reconstructed from the clams shells agree well with the model during the period of overlap. Both the chemical records and the model suggest the Gulf of Maine started warming in the late 1800s as a result of increased atmospheric greenhouse gas concentrations. Before this warming began, the Gulf of Maine region appears to have been cooling. The model suggests that this cooling trend is likely due to the influence of volcanic eruptions. The chemical records from the clam shells also suggest that part of this cooling is likely related to changing ocean circulation patterns. 
    more » « less
  4. Coastal systems can exhibit large variability in pH compared to open marine conditions, thus the impacts of ocean acidification (OA) on their resident calcifying organisms are potentially magnified. Further, our understanding of the natural baseline and variability of pH is spatially and temporally limited in coastal settings. In the few coastal locations that have been monitoring seawater pH, records are generally limited to <10 years and are thus unable to provide the full range of centennial to decadal natural variability. This is the case for the Gulf of Maine (northwestern Atlantic), a highly productive region of strategic importance to U.S. fisheries, that is facing multiple environmental stressors including rapid warming and threats from OA. Paleoceanographic proxy records are therefore much needed in this region to reconstruct past pH conditions beyond instrumental records. A clear candidate for this is the boron isotope (d11B) pH proxy provided the d11B sensitivity to pH in long-lived shallow water marine carbonates can be established. To this end, we grew juvenile and adult Arctica islandica (ocean quahog) in flowing seawater tanks for 20.5 weeks in controlled pH (7.4, 7.6, 7.8 or 8.0 (ambient) ± 0.02) and temperature (6, 9 or 12 ± 0.56 °C) conditions at Bowdoin College’s Schiller Coastal Studies Center, Harpswell, Maine (USA). The clams were stained twice with calcein and supplemented with food (Shellfish Diet) throughout the experiment to ensure suitable growth. New shell growth (average 67% increase in maximum shell height and 522% increase in buoyant weight across all treatments), constrained by calcein markings, were sampled for boron isotope analysis (d11B) to determine if shell d11B varied as a function of pH similar to many other calcifying organisms. The results of the culture experiment will yield whether or not Arctica islandica preserves seawater pH information in their shells. If so, the transfer function relating shell d11B to pH will be used to hindcast pH in the central coastal region of the Gulf of Maine during recent centuries. Alternatively, if the shell d11B signal is independent of ambient seawater pH, this may reveal the capacity of Arctica islandica to regulate internal calcifying fluid chemistry and their resilience to OA. 
    more » « less
  5. Warming in recent decades in the North Atlantic Ocean has been heterogeneous, with locations along the northwestern Atlantic experiencing some of the largest and fastest warming in the last 100 years. This region is important for fisheries but has limited spatial and temporal hydrographic instrumental series extending beyond the past decades, especially along the coastal United States portion of the northwestern Atlantic, thus impacting our understanding of past climatic variability. To provide a longer temporal context for these changes, we constructed a continuous master shell growth chronology spanning the last two centuries and provided geochemical records from the Mid-Atlantic region using the long-lived marine bivalve Arctica islandica. Shells were collected on the outer shelf region off Ocean City, Maryland, in ~ 60 m water depth. This region is sensitive to large-scale North Atlantic Ocean dynamics, including the Atlantic Meridional Overturning Circulation (AMOC) and Gulf Stream eddies. Based on growth histories and shell oxygen isotopes, we provide evidence of hydrographic variability beyond the relatively short instrumental period and evaluate the likely causes for these changes. These data allow us to better characterize recent and past oceanographic changes in the Mid-Atlantic region, synthesize the new results with previously developed paleo-records in the northwestern Atlantic, and provide guidance for the management of fisheries in this region. 
    more » « less