skip to main content


Title: Lyapunov-Net: A Deep Neural Network Architecture for Lyapunov Function Approximation
Award ID(s):
2152960 1925263
NSF-PAR ID:
10392484
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2022 IEEE 61st Conference on Decision and Control (CDC)
Page Range / eLocation ID:
2091 to 2096
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    We use a combination of analytical and numerical methods to study out-of-time order correlators (OTOCs) in the sparse Sachdev-Ye-Kitaev (SYK) model. We find that at a given order ofN, the standard result for theq-local, all-to-all SYK, obtained through the sum over ladder diagrams, is corrected by a series in the sparsity parameter,k. We present an algorithm to sum the diagrams at any given order of 1/(kq)n. We also study OTOCs numerically as a function of the sparsity parameter and determine the Lyapunov exponent. We find that numerical stability when extracting the Lyapunov exponent requires averaging over a massive number of realizations. This trade-off between the efficiency of the sparse model and consistent behavior at finiteNbecomes more significant for larger values ofN.

     
    more » « less
  2. This paper presents a counterexample-guided iterative algorithm to compute convex, piecewise linear (polyhedral) Lyapunov functions for continuous-time piecewise linear systems. Polyhedral Lyapunov functions provide an alternative to commonly used polynomial Lyapunov functions. Our approach first characterizes intrinsic properties of a polyhedral Lyapunov function including its “eccentricity” and “robustness” to perturbations. We then derive an algorithm that either computes a polyhedral Lyapunov function proving that the system is asymptotically stable, or concludes that no polyhedral Lyapunov function exists whose eccentricity and robustness parameters satisfy some user-provided limits. Significantly, our approach places no a-priori bound on the number of linear pieces that make up the desired polyhedral Lyapunov function. The algorithm alternates between a learning step and a verification step, always maintaining a finite set of witness states. The learning step solves a linear program to compute a candidate Lyapunov function compatible with a finite set of witness states. In the verification step, our approach verifies whether the candidate Lyapunov function is a valid Lyapunov function for the system. If verification fails, we obtain a new witness. We prove a theoretical bound on the maximum number of iterations needed by our algorithm. We demonstrate the applicability of the algorithm on numerical examples. 
    more » « less
  3. — This paper proposes a method for certifying the local asymptotic stability of a given nonlinear Ordinary Differential Equation (ODE) by using Sum-of-Squares (SOS) programming to search for a partially quadratic Lyapunov Function (LF). The proposed method is particularly well suited to the stability analysis of ODEs with high dimensional state spaces. This is due to the fact that partially quadratic LFs are parametrized by fewer decision variables when compared with general SOS LFs. The main contribution of this paper is using the Center Manifold Theorem to show that partially quadratic LFs that certify the local asymptotic stability of a given ODE exist under certain conditions. 
    more » « less