skip to main content


Title: Lyapunov-Net: A Deep Neural Network Architecture for Lyapunov Function Approximation
Award ID(s):
2152960 1925263
NSF-PAR ID:
10392484
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2022 IEEE 61st Conference on Decision and Control (CDC)
Page Range / eLocation ID:
2091 to 2096
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose new methods for learning control policies and neural network Lyapunov functions for nonlinear control problems, with provable guarantee of stability. The framework consists of a learner that attempts to find the control and Lyapunov functions, and a falsifier that finds counterexamples to quickly guide the learner towards solutions. The procedure terminates when no counterexample is found by the falsifier, in which case the controlled nonlinear system is provably stable. The approach significantly simplifies the process of Lyapunov control design, provides end-to-end correctness guarantee, and can obtain much larger regions of attraction than existing methods such as LQR and SOS/SDP. We show experiments on how the new methods obtain high-quality solutions for challenging robot control problems such as path tracking for wheeled vehicles and humanoid robot balancing. 
    more » « less
  2. A new diffusion mechanism from the neighborhood of elliptic equilibria for Hamiltonian flows in three or more degrees of freedom is introduced. We thus obtain explicit real entire Hamiltonians on R 2 d \mathbb {R}^{2d} , d ≥ 4 d\geq 4 , that have a Lyapunov unstable elliptic equilibrium with an arbitrary chosen frequency vector whose coordinates are not all of the same sign. For non-resonant frequency vectors, our examples all have divergent Birkhoff normal form at the equilibrium. On R 4 \mathbb {R}^4 , we give explicit examples of real entire Hamiltonians having an equilibrium with an arbitrary chosen non-resonant frequency vector and a divergent Birkhoff normal form. 
    more » « less
  3. Abstract

    We outline the flexibility program in smooth dynamics, focusing on flexibility of Lyapunov exponents for volume-preserving diffeomorphisms. We prove flexibility results for Anosov diffeomorphisms admitting dominated splittings into one-dimensional bundles.

     
    more » « less