skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neural Lyapunov Control
We propose new methods for learning control policies and neural network Lyapunov functions for nonlinear control problems, with provable guarantee of stability. The framework consists of a learner that attempts to find the control and Lyapunov functions, and a falsifier that finds counterexamples to quickly guide the learner towards solutions. The procedure terminates when no counterexample is found by the falsifier, in which case the controlled nonlinear system is provably stable. The approach significantly simplifies the process of Lyapunov control design, provides end-to-end correctness guarantee, and can obtain much larger regions of attraction than existing methods such as LQR and SOS/SDP. We show experiments on how the new methods obtain high-quality solutions for challenging robot control problems such as path tracking for wheeled vehicles and humanoid robot balancing.  more » « less
Award ID(s):
1830399
PAR ID:
10191111
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent studies suggest that deep neural networks (DNNs) have the potential to outperform neural networks (NNs) in approximating complex dynamics, which may enhance the tracking performance of a control system. However, unlike NN-based nonlinear control systems, designing update policies for the inner-layer weights of a DNN using Lyapunov-based stability methods is problematic since the inner-layer weights are nested within activation functions. Traditional DNN training methods (e.g., gradient descent) may improve the approximation capability of a DNN and thus could enhance a DNN-based controller’s tracking performance; however, traditional DNN-based control approaches lack stability guarantees and may be ineffective in training the DNN without large data sets, which could hinder the tracking performance. In this work, a DNN-based control structure is developed for a hybrid exoskeleton, which combines a rehabilitative robot with functional electrical stimulation (FES). The proposed control system updates the DNN weights in real-time and a rigorous Lyapunov-based stability analysis is performed to ensure semi-global asymptotic trajectory tracking, even without the presence of a data set. Specifically, a Lyapunov-based update law is developed for the output-layer DNN weights and Lyapunov-based constraints are established for the adaptation laws of the inner-layer DNN weights. Additionally, the DNN-based FES controller was designed to be saturated to increase the comfort and safety of the participant. 
    more » « less
  2. Many dynamical systems described by nonlinear ODEs are unstable. Their associated solutions do not converge towards an equilibrium point, but rather converge towards some invariant subset of the state space called an attractor set. For a given ODE, in general, the existence, shape and structure of the attractor sets of the ODE are unknown. Fortunately, the sublevel sets of Lyapunov functions can provide bounds on the attractor sets of ODEs. In this paper we propose a new Lyapunov characterization of attractor sets that is well suited to the problem of finding the minimal attractor set. We show our Lyapunov characterization is non-conservative even when restricted to Sum-of-Squares (SOS) Lyapunov functions. Given these results, we propose a SOS programming problem based on determinant maximization that yields an SOS Lyapunov function whose \begin{document}$ 1 $$\end{document}$-sublevel set has minimal volume, is an attractor set itself, and provides an optimal outer approximation of the minimal attractor set of the ODE. Several numerical examples are presented including the Lorenz attractor and Van-der-Pol oscillator. 
    more » « less
  3. Inverse kinematics solves the problem of how to control robot arm joints to achieve desired end effector positions, which is critical to any robot arm design and implemen- tations of control algorithms. It is a common misunderstanding that closed-form inverse kinematics analysis is solved. Popular software and algorithms, such as gradient descent or any multi-variant equations solving algorithm, claims solving inverse kinematics but only on the numerical level. While the numerical inverse kinematics solutions are rela- tively straightforward to obtain, these methods often fail, due to dependency on specific numerical values, even when the inverse kinematics solutions exist. Therefore, closed-form inverse kinematics analysis is superior, but there is no generalized automated algorithm. Up till now, the high-level logical reasoning involved in solving closed-form inverse kine- matics made it hard to automate, so it’s handled by human experts. We developed IKBT, a knowledge-based intelligent system that can mimic human experts’ behaviors in solving closed-from inverse kinematics using Behavior Tree. Knowledge and rules used by engineers when solving closed-from inverse kinematics are encoded as actions in Behavior Tree. The order of applying these rules is governed by higher level composite nodes, which resembles the logical reasoning process of engineers. It is also the first time that the dependency of joint variables, an important issue in inverse kinematics analysis, is automatically tracked in graph form. Besides generating closed-form solutions, IKBT also explains its solving strategies in human (engineers) interpretable form. This is a proof-of-concept of using Behavior Trees to solve high-cognitive problems. 
    more » « less
  4. Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential equations. The Lyapunov theory offers a solution for stabilizing control systems, still, current methods relying on Lyapunov functions require access to complete dynamics or samples of system executions throughout the entire state space. Consequently, they are impractical for high-dimensional systems. This paper introduces a novel framework, LYapunov-Guided Exploration (LYGE), for learning stabilizing controllers tailored to high-dimensional, unknown systems. LYGE employs Lyapunov theory to iteratively guide the search for samples during exploration while simultaneously learning the local system dynamics, control policy, and Lyapunov functions. We demonstrate its scalability on highly complex systems, including a high-fidelity F-16 jet model featuring a 16D state space and a 4D input space. Experiments indicate that, compared to prior works in reinforcement learning, imitation learning, and neural certificates, LYGE reduces the distance to the goal by 50% while requiring only 5% to 32% of the samples. Furthermore, we demonstrate that our algorithm can be extended to learn controllers guided by other certificate functions for unknown systems. 
    more » « less
  5. Deep learning methods have been widely used in robotic applications, making learning-enabled control design for complex nonlinear systems a promising direction. Although deep reinforcement learning methods have demonstrated impressive empirical performance, they lack the stability guarantees that are important in safety-critical situations. One way to provide these guarantees is to learn Lyapunov certificates alongside control policies. There are three related problems: 1) verify that a given Lyapunov function candidate satisfies the conditions for a given controller on a region, 2) find a valid Lyapunov function and controller on a given region, and 3) find a valid Lyapunov function and a controller such that the region of attraction is as large as possible. Previous work has shown that if the dynamics are piecewise linear, it is possible to solve problem 1) and 2) by solving a Mixed-Integer Linear Program (MILP). In this work, we build upon this method by proposing a Lyapunov neural network that considers monotonicity over half spaces in different directions. We 1) propose a specific choice of Lyapunov function architecture that ensures non-negativity and a unique global minimum by construction, and 2) show that this can be leveraged to find the controller and Lyapunov certificates faster and with a larger valid region by maximizing the size of a square inscribed in a given level set. We apply our method to a 2D inverted pendulum, unicycle path following, a 3-D feedback system, and a 4-D cart pole system, and demonstrate it can shorten the training time by half compared to the baseline, as well as find a larger ROA. 
    more » « less