skip to main content

This content will become publicly available on July 1, 2023

Title: Covariate Shift Detection via Domain Interpolation Sensitivity
Covariate shift is a major roadblock in the reliability of image classifiers in the real world. Work on covariate shift has been focused on training classifiers to adapt or generalize to unseen domains. However, for transparent decision making, it is equally desirable to develop covariate shift detection methods that can indicate whether or not a test image belongs to an unseen domain. In this paper, we introduce a benchmark for covariate shift detection (CSD), that builds upon and complements previous work on domain generalization. We use state-of-the-art OOD detection methods as baselines and find them to be worse than simple confidence-based methods on our CSD benchmark. We propose an interpolation-based technique, Domain Interpolation Sensitivity (DIS), based on the simple hypothesis that interpolation between the test input and randomly sampled inputs from the training domain, offers sufficient information to distinguish between the training domain and unseen domains under covariate shift. DIS surpasses all OOD detection baselines for CSD on multiple domain generalization benchmarks.
Award ID(s):
Publication Date:
Journal Name:
First Workshop on Interpolation Regularizers and Beyond at NeurIPS 2022
Sponsoring Org:
National Science Foundation
More Like this
  1. Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine learning system's ability to generalize beyond the biases of a training set. OOD benchmarks are designed to present a different joint distribution of data and labels between training and test time. VQA-CP has become the standard OOD benchmark for visual question answering, but we discovered three troubling practices in its current use. First, most published methods rely on explicit knowledge of the construction of the OOD splits. They often rely on ``inverting'' the distribution of labels, e.g. answering mostly 'yes' when the common training answer is 'no'. Second, the OOD test set is used for model selection. Third, a model's in-domain performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit a more balanced distribution of labels. These three practices defeat the objective of evaluating generalization, and put into question the value of methods specifically designed for this dataset. We show that embarrassingly-simple methods, including one that generates answers at random, surpass the state of the art on some question types. We provide short- and long-term solutions to avoid these pitfalls and realize the benefits of OOD evaluation.
  2. Few-shot classification aims to recognize novel categories with only few labeled images in each class. Existing metric-based few-shot classification algorithms predict categories by comparing the feature embeddings of query images with those from a few labeled images (support examples) using a learned metric function. While promising performance has been demonstrated, these methods often fail to generalize to unseen domains due to large discrepancy of the feature distribution across domains. In this work, we address the problem of few-shot classification under domain shifts for metric-based methods. Our core idea is to use feature-wise transformation layers for augmenting the image features using affine transforms to simulate various feature distributions under different domains in the training stage. To capture variations of the feature distributions under different domains, we further apply a learning-to-learn approach to search for the hyper-parameters of the feature-wise transformation layers. We conduct extensive experiments and ablation studies under the domain generalization setting using five few-shot classification datasets: mini-ImageNet, CUB, Cars, Places, and Plantae. Experimental results demonstrate that the proposed feature-wise transformation layer is applicable to various metric-based models, and provides consistent improvements on the few-shot classification performance under domain shift.
  3. Machine learning algorithms typically assume that the training and test samples come from the same distributions, i.e., in-distribution. However, in open-world scenarios, streaming big data can be Out-Of-Distribution (OOD), rendering these algorithms ineffective. Prior solutions to the OOD challenge seek to identify invariant features across different training domains. The underlying assumption is that these invariant features should also work reasonably well in the unlabeled target domain. By contrast, this work is interested in the domain-specific features that include both invariant features and features unique to the target domain. We propose a simple yet effective approach that relies on correlations in general regardless of whether the features are invariant or not. Our approach uses the most confidently predicted samples identified by an OOD base model (teacher model) to train a new model (student model) that effectively adapts to the target domain. Empirical evaluations on benchmark datasets show that the performance is improved over the SOTA by ∼10-20%.
  4. The novelty detection models learn a decision boundary around multiple categories of a given dataset. This helps such models in detecting any novel classes encountered during testing. However, in many cases, the test data distribution can be different from that of the training data. For such cases, the novelty detection models risk detecting a known class as novel due to the dataset distribution shift. This scenario is often ignored while working with novelty detection. To this end, we consider the problem of multiple class novelty detection under dataset distribution shift to improve the novelty detection performance. Firstly, we discuss the problem setting in detail and show how it affects the performance of current novelty detection methods. Secondly, we show that one could improve those novelty detection methods with a simple integration of domain adversarial loss. Finally, we propose a method which brings together the techniques from novelty detection and domain adaptation to improve generalization of multiple class novelty detection on different domains. We evaluate the proposed method on digits and object recognition datasets and show that it provides improvements over the baseline methods.
  5. Covariate shift is a prevalent setting for supervised learning in the wild when the training and test data are drawn from different time periods, different but related domains, or via different sampling strategies. This paper addresses a transfer learning setting, with covariate shift between source and target domains. Most existing methods for correcting covariate shift exploit density ratios of the features to reweight the source-domain data, and when the features are high-dimensional, the estimated density ratios may suffer large estimation variances, leading to poor performance of prediction under covariate shift. In this work, we investigate the dependence of covariate shift correction performance on the dimensionality of the features, and propose a correction method that finds a low-dimensional representation of the features, which takes into account feature relevant to the target Y, and exploits the density ratio of this representation for importance reweighting. We discuss the factors that affect the performance of our method, and demonstrate its capabilities on both pseudo-real data and real-world applications.