skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law
Out-of-distribution (OOD) testing is increasingly popular for evaluating a machine learning system's ability to generalize beyond the biases of a training set. OOD benchmarks are designed to present a different joint distribution of data and labels between training and test time. VQA-CP has become the standard OOD benchmark for visual question answering, but we discovered three troubling practices in its current use. First, most published methods rely on explicit knowledge of the construction of the OOD splits. They often rely on ``inverting'' the distribution of labels, e.g. answering mostly 'yes' when the common training answer is 'no'. Second, the OOD test set is used for model selection. Third, a model's in-domain performance is assessed after retraining it on in-domain splits (VQA v2) that exhibit a more balanced distribution of labels. These three practices defeat the objective of evaluating generalization, and put into question the value of methods specifically designed for this dataset. We show that embarrassingly-simple methods, including one that generates answers at random, surpass the state of the art on some question types. We provide short- and long-term solutions to avoid these pitfalls and realize the benefits of OOD evaluation.  more » « less
Award ID(s):
1909696
PAR ID:
10274717
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Neural Information and Processing Systems (NeurIPS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    While progress has been made on the visual question answering leaderboards, models often utilize spurious correlations and priors in datasets under the i.i.d. setting. As such, evaluation on out-of-distribution (OOD) test samples has emerged as a proxy for generalization. In this paper, we present \textit{MUTANT}, a training paradigm that exposes the model to perceptually similar, yet semantically distinct \textit{mutations} of the input, to improve OOD generalization, such as the VQA-CP challenge. Under this paradigm, models utilize a consistency-constrained training objective to understand the effect of semantic changes in input (question-image pair) on the output (answer). Unlike existing methods on VQA-CP, \textit{MUTANT} does not rely on the knowledge about the nature of train and test answer distributions. \textit{MUTANT} establishes a new state-of-the-art accuracy on VQA-CP with a 10.57{\%} improvement. Our work opens up avenues for the use of semantic input mutations for OOD generalization in question answering. 
    more » « less
  2. Open-domain question answering answers a question based on evidence retrieved from a large corpus. State-of-the-art neural approaches require intermediate evidence annotations for training. However, such intermediate annotations are expensive, and methods that rely on them cannot transfer to the more common setting, where only question– answer pairs are available. This paper investigates whether models can learn to find evidence from a large corpus, with only distant supervision from answer labels for model training, thereby generating no additional annotation cost. We introduce a novel approach (DISTDR) that iteratively improves over a weak retriever by alternately finding evidence from the up-to-date model and encouraging the model to learn the most likely evidence. Without using any evidence labels, DISTDR is on par with fully-supervised state-of-theart methods on both multi-hop and singlehop QA benchmarks. Our analysis confirms that DISTDR finds more accurate evidence over iterations, which leads to model improvements. The code is available at https:// github.com/henryzhao5852/DistDR. 
    more » « less
  3. Interest in automatically searching for Transformer neural architectures for machine translation (MT) has been increasing. Current methods show promising results in in-domain settings, where training and test data share the same distribution. However, in real-world MT applications, it is common that the test data has a different distribution than the training data. In these out-of-domain (OOD) situations, Transformer architectures optimized for the linguistic characteristics of the training sentences struggle to produce accurate translations for OOD sentences during testing. To tackle this issue, we propose a multi-level optimization based method to automatically search for neural architectures that possess robust OOD generalization capabilities. During the architecture search process, our method automatically synthesizes approximated OOD MT data, which is used to evaluate and improve the architectures' ability of generalizing to OOD scenarios. The generation of approximated OOD data and the search for optimal architectures are executed in an integrated, end-to-end manner. Evaluated across multiple datasets, our method demonstrates strong OOD generalization performance, surpassing state-of-the-art approaches. 
    more » « less
  4. There are two main challenges in Visual Question Answering (VQA). The first one is that each model obtains its strengths and shortcomings when applied to several questions; what is more, the “ceiling effect” for specific questions is difficult to overcome with simple consecutive training. The second challenge is that even the state-of-the-art dataset is of large scale, questions targeted at a single image are off in format and lack diversity in content. We introduce our self-questioning model with multi-agent training: TA-student VQA. This framework differs from standard VQA algorithms by involving question generating mechanisms and collaborative learning between question answering agents. Thus, TA-student VQA overcomes the limitation of the content diversity and format variation of questions and improves the overall performance of multiple question-answering agents. We evaluate our model on VQA-v2 [1], which outperforms algorithms without such mechanisms. In addition, TA-student VQA achieves a greater model capacity, allowing it to answer more generated questions in addition to those in the annotated datasets. 
    more » « less
  5. null (Ed.)
    Abstract Medical images are difficult to comprehend for a person without expertise. The scarcity of medical practitioners across the globe often face the issue of physical and mental fatigue due to the high number of cases, inducing human errors during the diagnosis. In such scenarios, having an additional opinion can be helpful in boosting the confidence of the decision maker. Thus, it becomes crucial to have a reliable visual question answering (VQA) system to provide a ‘second opinion’ on medical cases. However, most of the VQA systems that work today cater to real-world problems and are not specifically tailored for handling medical images. Moreover, the VQA system for medical images needs to consider a limited amount of training data available in this domain. In this paper, we develop MedFuseNet , an attention-based multimodal deep learning model, for VQA on medical images taking the associated challenges into account. Our MedFuseNet aims at maximizing the learning with minimal complexity by breaking the problem statement into simpler tasks and predicting the answer. We tackle two types of answer prediction—categorization and generation. We conducted an extensive set of quantitative and qualitative analyses to evaluate the performance of MedFuseNet . Our experiments demonstrate that MedFuseNet outperforms the state-of-the-art VQA methods, and that visualization of the captured attentions showcases the intepretability of our model’s predicted results. 
    more » « less