skip to main content

Title: Targeted Attack on Deep RL-based Autonomous Driving with Learned Visual Patterns
Recent studies demonstrated the vulnerability of control policies learned through deep reinforcement learning against adversarial attacks, raising concerns about the application of such models to risk-sensitive tasks such as autonomous driving. Threat models for these demonstrations are limited to (1) targeted attacks through real-time manipulation of the agent's observation, and (2) untargeted attacks through manipulation of the physical environment. The former assumes full access to the agent's states/observations at all times, while the latter has no control over attack outcomes. This paper investigates the feasibility of targeted attacks through visually learned patterns placed on physical objects in the environment, a threat model that combines the practicality and effectiveness of the existing ones. Through analysis, we demonstrate that a pre-trained policy can be hijacked within a time window, e.g., performing an unintended self-parking, when an adversarial object is present. To enable the attack, we adopt an assumption that the dynamics of both the environment and the agent can be learned by the attacker. Lastly, we empirically show the effectiveness of the proposed attack on different driving scenarios, perform a location robustness test, and study the tradeoff between the attack strength and its effectiveness Code is available at Targeted-Physical-Adversarial-Attacks-on-AD
; ; ;
Award ID(s):
Publication Date:
Journal Name:
2022 International Conference on Robotics and Automation (ICRA)
Page Range or eLocation-ID:
10571 to 10577
Sponsoring Org:
National Science Foundation
More Like this
  1. Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this article, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender’s feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker’s freedom in conducting manipulations in the problem space; knowing the attacker’s manipulation set is critical to the defender’s success; and the effectiveness of adversarial training depends on the defender’s capability in identifying the most powerful attack. We also discuss a number of future research directions.
  2. The NTT (Nippon Telegraph and Telephone) Data Corporation report found that 80% of U.S. consumers are concerned about their smart home data security. The Internet of Things (IoT) technology brings many benefits to people's homes, and more people across the world are heavily dependent on the technology and its devices. However, many IoT devices are deployed without considering security, increasing the number of attack vectors available to attackers. Numerous Internet of Things devices lacking security features have been compromised by attackers, resulting in many security incidents. Attackers can infiltrate these smart home devices and control the home via turning off the lights, controlling the alarm systems, and unlocking the smart locks, to name a few. Attackers have also been able to access the smart home network, leading to data exfiltration. There are many threats that smart homes face, such as the Man-in-the-Middle (MIM) attacks, data and identity theft, and Denial of Service (DoS) attacks. The hardware vulnerabilities often targeted by attackers are SPI, UART, JTAG, USB, etc. Therefore, to enhance the security of the smart devices used in our daily lives, threat modeling should be implemented early on in developing any given system. This past Spring semester, Morgan State Universitymore »launched a (senior) capstone project targeting undergraduate (electrical) engineering students who were thus allowed to research with the Cybersecurity Assurance and Policy (CAP) center for four months. The primary purpose of the capstone was to help students further develop both hardware and software skills while researching. For this project, the students mainly focused on the Arduino Mega Board. Some of the expected outcomes for this capstone project include: 1) understanding the physical board components, 2) learning how to attack the board through the STRIDE technique, 3) generating a Data Flow Diagram (DFD) of the system using the Microsoft threat modeling tool, 4) understanding the attack patterns, and 5) generating the threat based on the user's input. To prevent future threats and attacks from taking advantage of systems vulnerabilities, the practice of "threat modeling" is implemented. This method allows the analysis of potential attackers, including their goals and techniques, while also providing solutions and mitigation strategies. Although Threat modeling can be performed throughout the development of a system, implementing it during developmental stages will prevent further problems in the future. Threat Modeling is crucial because it will help identify any potential threat before it propagates in the system. Identifying threats and providing countermeasures will save both time and money while also keeping the consumers safe. As a result, students must grow to understand how essential detecting and preventing attacks are to protect consumer information systems and networks. At the end of this capstone project, students should take away hands-on skills in cyber defense.« less
  3. Automated Lane Centering (ALC) systems are convenient and widely deployed today, but also highly security and safety critical. In this work, we are the first to systematically study the security of state-of-the-art deep learning based ALC systems in their designed operational domains under physical-world adversarial attacks. We formulate the problem with a safetycritical attack goal, and a novel and domain-specific attack vector: dirty road patches. To systematically generate the attack, we adopt an optimization-based approach and overcome domain-specific design challenges such as camera frame interdependencies due to attack-influenced vehicle control, and the lack of objective function design for lane detection models. We evaluate our attack on a production ALC using 80 scenarios from real-world driving traces. The results show that our attack is highly effective with over 97.5% success rates and less than 0.903 sec average success time, which is substantially lower than the average driver reaction time. This attack is also found (1) robust to various real-world factors such as lighting conditions and view angles, (2) general to different model designs, and (3) stealthy from the driver’s view. To understand the safety impacts, we conduct experiments using software-in-the-loop simulation and attack trace injection in a real vehicle. The resultsmore »show that our attack can cause a 100% collision rate in different scenarios, including when tested with common safety features such as automatic emergency braking. We also evaluate and discuss defenses.« less
  4. Machine learning-based security detection models have become prevalent in modern malware and intrusion detection systems. However, previous studies show that such models are susceptible to adversarial evasion attacks. In this type of attack, inputs (i.e., adversarial examples) are specially crafted by intelligent malicious adversaries, with the aim of being misclassified by existing state-of-the-art models (e.g., deep neural networks). Once the attackers can fool a classifier to think that a malicious input is actually benign, they can render a machine learning-based malware or intrusion detection system ineffective. Objective To help security practitioners and researchers build a more robust model against non-adaptive, white-box and non-targeted adversarial evasion attacks through the idea of ensemble model. Method We propose an approach called Omni, the main idea of which is to explore methods that create an ensemble of “unexpected models”; i.e., models whose control hyperparameters have a large distance to the hyperparameters of an adversary’s target model, with which we then make an optimized weighted ensemble prediction. Results In studies with five types of adversarial evasion attacks (FGSM, BIM, JSMA, DeepFool and Carlini-Wagner) on five security datasets (NSL-KDD, CIC-IDS-2017, CSE-CIC-IDS2018, CICAndMal2017 and the Contagio PDF dataset), we show Omni is a promising approach as amore »defense strategy against adversarial attacks when compared with other baseline treatments Conclusions When employing ensemble defense against adversarial evasion attacks, we suggest to create ensemble with unexpected models that are distant from the attacker’s expected model (i.e., target model) through methods such as hyperparameter optimization.« less
  5. Robustness of Deep Reinforcement Learning (DRL) algorithms towards adversarial attacks in real world applications such as those deployed in cyber-physical systems (CPS) are of increasing concern. Numerous studies have investigated the mechanisms of attacks on the RL agent's state space. Nonetheless, attacks on the RL agent's action space (corresponding to actuators in engineering systems) are equally perverse, but such attacks are relatively less studied in the ML literature. In this work, we first frame the problem as an optimization problem of minimizing the cumulative reward of an RL agent with decoupled constraints as the budget of attack. We propose the white-box Myopic Action Space (MAS) attack algorithm that distributes the attacks across the action space dimensions. Next, we reformulate the optimization problem above with the same objective function, but with a temporally coupled constraint on the attack budget to take into account the approximated dynamics of the agent. This leads to the white-box Look-ahead Action Space (LAS) attack algorithm that distributes the attacks across the action and temporal dimensions. Our results showed that using the same amount of resources, the LAS attack deteriorates the agent's performance significantly more than the MAS attack. This reveals the possibility that with limited resource,more »an adversary can utilize the agent's dynamics to malevolently craft attacks that causes the agent to fail. Additionally, we leverage these attack strategies as a possible tool to gain insights on the potential vulnerabilities of DRL agents.« less