skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Developing Intrapreneurship in the Next Generation of Engineering Innovators and Leaders
This S-STEM Project responds to a growing disparity among technology firms and the number of under-represented people in managerial and executive positions. Of particular interest is developing mentorship relationships and intrapreneurial competencies (i.e., entrepreneurship within established firms). Mentorship and increased skills preemptively aid in the retention and promotability of engineering undergraduates (upon entering the workforce). Specifically, the project was designed to produce electrical and computer engineering graduates with intrapreneurial knowledge and skills, which are characteristic of managers and innovators. Using the Intrepreneurial Competencies literature, the authors develop and test a multi-phased project among a diverse group of engineering undergraduates. The literature suggests enhancing intrapreneurial skills of students in engineering can be achieved through a combination of curricular and real-world experiences. Thus, this project incorporates faculty and industry mentorship, workforce development seminars, an industrial internship, entrepreneurship programs, and scholarships. Cohort 1 is comprised of a diverse group of 16 students (8 men, 8 women, 8 ethnic minorities). Students attended lectures by prominent engineering entrepreneurs, participated in a 3-day start-up weekend, attended engineering job fairs and two semesters of project-focused seminars, and read entrepreneurial and/or leadership-related books. Two primary data sets were collected utilizing a repeated measures design. Data were collected in the form of student reflections about being a mentee in the mentor relationships and interview data from mentors (i.e., engineering professionals). Students documented their mentoring sessions, which were reviewed by the project team. A primary theme that emerged from mentor reports was the effects of COVID-19, mostly how students felt about their coursework and how their industry mentors felt about their jobs. Although there was deep concern about the impacts of COVID-19, the students expressed a sense of growth and learning in spite of the virus. Students self-reported that the S-STEM experience was still highly beneficial, even as much of the coursework and mentoring for the latter half of the Spring semester had to be moved online. The students responded well, with the average semester GPA rising from 3.483 in the Fall to 3.774 in the Spring. Second, data were collected by survey pre- and post-semester to measure improvements in Intrapreneurial Competencies. The “Intrapreneurial Competencies Measurement Scale”(ICMS) by Vargas-Halabi et al. was used to measure and evaluate the development of intrapreneurial competencies, which include: (1) Opportunity promoter, (2) Proactivity, (3) Flexibility, (4) Drive, and (5) Risk taking. Each of the six categories of the ICMS is divided into 3-9 sub-categories to assess skill and mindset in the six general categories. In answering the questions on the ICMS test, students evaluated their proficiency in each of the areas. Growth was evident for almost all the categories and sub-categories across each of the three data-gathering points.  more » « less
Award ID(s):
1834137
PAR ID:
10392518
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference
Volume:
https://peer.asee.org/36944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering students are particularly interested in attaining internships prior to completing their undergraduate studies. It is generally acknowledged that internships provide critical insight into the nature and demands of engineering roles. However, pre-internship students tend to be apprehensive about how to prepare for the internship opportunity and how to excel when in the position. Students enrolled in a Scholarships in STEM (S-STEM) program have both a faculty mentor and an industry mentor, that are important components of a process to infuse intrapreneurial competencies (i.e., entrepreneurship within established firms), in addition to the discipline-specific knowledge and skills provided by an engineering education. The research presented in this paper analyzes data from the students’ perspectives as well as mentors’ perspectives to better understand how the mentoring experience shapes readiness for internships, as well as readiness for employment or further education. Our findings suggest that both students and mentors perceive the mentorship process to be highly beneficial. 
    more » « less
  2. Universities have been expanding undergraduate data science programs. Involving graduate students in these new opportunities can foster their growth as data science educators. We describe two programs that employ a near-peer mentoring structure, in which graduate students mentor undergraduates, to (a) strengthen their teaching and mentoring skills and (b) provide research and learning experiences for undergraduates from diverse backgrounds. In the Data Science for Social Good program, undergraduate participants work in teams to tackle a data science project with social impact. Graduate mentors guide project work and provide just-in-time teaching and feedback. The Stanford Mentoring in Data Science course offers training in effective and inclusive mentorship strategies. In an experiential learning framework, enrolled graduate students are paired with undergraduate students from non-R1 schools, whom they mentor through weekly one-on-one remote meetings. In end-of-program surveys, mentors reported growth through both programs. Drawing from these experiences, we developed a self-paced mentor training guide, which engages teaching, mentoring and project management abilities. These initiatives and the shared materials can serve as prototypes of future programs that cultivate mutual growth of both undergraduate and graduate students in a high-touch, inclusive, and encouraging environment. 
    more » « less
  3. Texas State University received an NSF S-STEM award to support two cohorts of talented, low-income engineering majors, with the first cohort starting their freshman year in Fall 2024. In addition to the scholarships awarded, this program aims to increase students’ engineering design self-efficacy, engineering identity, and improve persistence to graduation. The program includes unique strategies for achieving these goals, emphasizing mentoring and building a sense of community among participants. The SEED scholars were paired with a faculty mentor in their engineering major prior to their arrival on campus for their freshman year. This early contact was intended to open lines of communication with a faculty member, so the students felt they had a trustworthy source of information from someone who cared about them. As Texas State University has a high number of first-generation college students, there was an expectation that this program would likely attract a fair number of first-generation students. Without another family member’s experience about how to be a college student, having this faculty mentor gave these students a person who could help them answer questions and navigate the process leading to their first semester on campus. For instance, mentors were able to talk with students about dorm selection, mathematics course placement (including strategies for placing into a higher-level mathematics course), and what to expect in their engineering coursework. Student participation in an Engineering Living Learning Community (LLC) is another unique program feature to enhance community among the SEED scholars. A general description of the program and preliminary results from the students’ self-reported sense of belonging in engineering, engineering design self-efficacy, and engineering identity are presented in this paper. 
    more » « less
  4. IRE STEM Scholars program contributes to the national need for well-educated STEM professionals by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students. The IRE STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with a Bachelor of Science degree in engineering and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce; it is during this semester that students receive the S-STEM scholarship. During the last two years of their education, IRE students work in paid engineering co-ops, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project financially supports low-income students during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project provides personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and subjective wellbeing (or mental and physical health). This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? Currently in its second year, the project has supported 20 students, including 6 students on co-op. These six students have been interviewed on their sense of belonging in engineering during their co-op experiences, and have provided multiple survey data points describing IRE students’ experiences in co-op and overall sense of belonging. These IRE STEM Scholars program participant-specific data along with survey data documenting the co-op experiences of all IRE students describe how co-op experiences can be used to provide a financially responsible pathway to an engineering degree for low-income, high achieving students. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  5. Employability should be a primary objective for computing programs, as the majority of IT and other computing graduates go to work in industry upon graduation. Furthermore, students want to be prepared for a career, not just an entry-level job. However, literature has shown a gap between employers’ needs and undergraduates’ preparation in non-technical areas. Competencies (skills, knowledge, and dispositions) can be a common language used by both employers and educators. The more we learn about competencies employers expect, the more we can ensure programs match their expectations. This study focuses on competencies required by managers, by interviewing ten directors/managers, project managers, and product managers who had prior experience in computing-related roles. Each was asked to discuss competencies most important to their current position. Emerging themes identified the most important managerial skills (project management, evaluation of candidates, mentorship, managers’ own technical skills and knowledge, adjusting management style as needed, and appropriately assigning team members), professional skills (communication, problem solving, and relationship building), and dispositions (lifelong learning; adaptability/flexibility; being self-driven; self-awareness; being helpful, positive and pleasant; valuing communication and collaboration; having passion for technical work; and perseverance). Implications for education are discussed. This study is part of a larger NSF-funded project related to investigating the competencies required by computing professionals, and the design of educational resources to promote the development of these competencies. 
    more » « less