skip to main content


Title: Developing Intrapreneurship in the Next Generation of Engineering Innovators and Leaders
This S-STEM Project responds to a growing disparity among technology firms and the number of under-represented people in managerial and executive positions. Of particular interest is developing mentorship relationships and intrapreneurial competencies (i.e., entrepreneurship within established firms). Mentorship and increased skills preemptively aid in the retention and promotability of engineering undergraduates (upon entering the workforce). Specifically, the project was designed to produce electrical and computer engineering graduates with intrapreneurial knowledge and skills, which are characteristic of managers and innovators. Using the Intrepreneurial Competencies literature, the authors develop and test a multi-phased project among a diverse group of engineering undergraduates. The literature suggests enhancing intrapreneurial skills of students in engineering can be achieved through a combination of curricular and real-world experiences. Thus, this project incorporates faculty and industry mentorship, workforce development seminars, an industrial internship, entrepreneurship programs, and scholarships. Cohort 1 is comprised of a diverse group of 16 students (8 men, 8 women, 8 ethnic minorities). Students attended lectures by prominent engineering entrepreneurs, participated in a 3-day start-up weekend, attended engineering job fairs and two semesters of project-focused seminars, and read entrepreneurial and/or leadership-related books. Two primary data sets were collected utilizing a repeated measures design. Data were collected in the form of student reflections about being a mentee in the mentor relationships and interview data from mentors (i.e., engineering professionals). Students documented their mentoring sessions, which were reviewed by the project team. A primary theme that emerged from mentor reports was the effects of COVID-19, mostly how students felt about their coursework and how their industry mentors felt about their jobs. Although there was deep concern about the impacts of COVID-19, the students expressed a sense of growth and learning in spite of the virus. Students self-reported that the S-STEM experience was still highly beneficial, even as much of the coursework and mentoring for the latter half of the Spring semester had to be moved online. The students responded well, with the average semester GPA rising from 3.483 in the Fall to 3.774 in the Spring. Second, data were collected by survey pre- and post-semester to measure improvements in Intrapreneurial Competencies. The “Intrapreneurial Competencies Measurement Scale”(ICMS) by Vargas-Halabi et al. was used to measure and evaluate the development of intrapreneurial competencies, which include: (1) Opportunity promoter, (2) Proactivity, (3) Flexibility, (4) Drive, and (5) Risk taking. Each of the six categories of the ICMS is divided into 3-9 sub-categories to assess skill and mindset in the six general categories. In answering the questions on the ICMS test, students evaluated their proficiency in each of the areas. Growth was evident for almost all the categories and sub-categories across each of the three data-gathering points.  more » « less
Award ID(s):
1834137
NSF-PAR ID:
10392518
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 ASEE Virtual Annual Conference
Volume:
https://peer.asee.org/36944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering students are particularly interested in attaining internships prior to completing their undergraduate studies. It is generally acknowledged that internships provide critical insight into the nature and demands of engineering roles. However, pre-internship students tend to be apprehensive about how to prepare for the internship opportunity and how to excel when in the position. Students enrolled in a Scholarships in STEM (S-STEM) program have both a faculty mentor and an industry mentor, that are important components of a process to infuse intrapreneurial competencies (i.e., entrepreneurship within established firms), in addition to the discipline-specific knowledge and skills provided by an engineering education. The research presented in this paper analyzes data from the students’ perspectives as well as mentors’ perspectives to better understand how the mentoring experience shapes readiness for internships, as well as readiness for employment or further education. Our findings suggest that both students and mentors perceive the mentorship process to be highly beneficial. 
    more » « less
  2. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  3. This paper reports on activities and outcomes from years three and four of a 5-year NSF Scholarships in Science, Technology, Engineering and Mathematics (S-STEM) award at a two-year college. The college is a minority-serving institution located in a metro area with high rates of concentrated poverty and low levels of educational attainment. Through the program scholarships are awarded to cohorts of students majoring in engineering selected each fall semester from applications collected the previous spring. After completing transfer preparation curriculum at the two-year college, select scholars who transfer to the local four-year university may remain in the program for continued support. Students in each cohort, including those who remain in the program after transfer, are supported with annual scholarships of up to $6000, depending on financial need. In addition to scholarship money, students participate in a variety of program activities throughout the school year in the form of academic seminars, extracurricular events, professional development, faculty mentoring, peer mentoring, academic advising, and undergraduate research opportunities. Noteworthy elements of the program in years three and four include 1) the selection and award of the fourth and final cohort entering the program, 2) a transition of leadership to a new principal investigator for the program at the two-college, and 3) the increase in number of students who have continued with the program after transfer to the local four-year university. During year three of this five-year program, the first cohort of students successfully transferred and completed a full year at their new four-year university. Supplemental funding has enabled the program to expand support for additional students at both the two-year college and the four-year university after transfer. This has reduced financial burdens and addressed the unanticipated challenge that some students would need more than two years to transfer due to delays brought on by the COVID-19 pandemic. Program evaluation findings identified requests from students that would enhance the program approach and further prepare for transfer. These included establishing a transferred student panel for students preparing to transfer, seminars on maintaining a positive work/life balance and differences in university systems, further support for peer mentorship for both mentors and mentees, and additional opportunities for collaboration across engineering disciplines. Research findings from interviews conducted with transferred students identified several opportunities to further enhance the transfer preparation approach and support structures needed for success at their new institution. These include intentional preparation for establishing membership in a new community, identification of systems and processes for support at their new institution, including how these may differ from their previous institution, and opportunity to serve as a mentor and engage with students preparing to transfer. In addition, in year 4 program leadership transitioned due to a new role at new university and more students support requests of leadership at both the two-year college and the four-year transfer university than originally anticipated. This has resulted in reflection on the program administration and the people and structures that sustain it. This poster will include summaries of scholar activities, transition in and impact on program leadership, program evaluation results, and research findings from the first cohort of students that have transferred and completed a full year at their new institution. 
    more » « less
  4. In 2019, University of Houston (UH) at Houston, Texas was awarded an NSF Research Experience for Teachers (RET) site grant titled “RET Site: High School Teacher Experience in Engineering Design and Manufacturing.” The goal of the project is to host 12 high school teachers each summer to participate in engineering design and manufacturing research and then convert their experience into high school curriculum. In summer of 2021, the first cohort of 12 teachers from Region 4 of Southeast Texas participated in the RET program at UH College of Technology (COT). This six-week program, open to local high school STEM teachers in Texas, sought to advance educators’ knowledge of concepts in design and manufacturing as a means of enriching high school curriculums and meeting foundational standards set by 2013’s Texas House Bill 5. These standards require enhanced STEM contents in high school curricula as a prerequisite for graduation, detailed in the Texas Essential Knowledge and Skills standard. Due to the pandemic situation, about 50% of the activities are online and the rest are face to face. About 40% of the time, teachers attended online workshops to enhance their knowledge of topics in engineering design and manufacturing before embarking on applicable research projects in the labs. Six UH COT engineering technology professors each led workshops in a week. The four tenure-track engineering mentors, assisted by student research assistants, each mentored three teachers on projects ranging from additive manufacturing to thermal/fluids, materials, and energy. The group also participated in field trips to local companies including ARC Specialties, Master Flo, Re:3D, and Forged Components. They worked with two instructional track engineering technology professors and one professor of education on applying their learnings to lesson plan design. Participants also met weekly for online Brown Bag teacher seminars to share their experiences and discuss curricula, which was organized by the RET master teacher. On the final day of the program, the teachers presented their curriculum prototype for the fall semester to the group and received completion certificates. The program assessment was led by the assessment specialist, Director of Assessment and Accreditation at UH COT. Teacher participants found the research experience with their mentors beneficial not only to them, but also to their students according to our findings from interviews. The mentors will visit their mentees’ classrooms to see the lesson plans being implemented. In the spring of 2022, the teachers will present their refined curricula at a RET symposium to be organized at UH and submit their standards-aligned plans to teachengineering.org for other K-12 educators to access. 
    more » « less
  5. null (Ed.)
    Advancements in information technology and computational intelligence have transformed the manufacturing landscape, allowing firms to produce highly complex and customized product in a relatively short amount of time. However, our research shows that the lack of a skilled workforce remains a challenge in the manufacturing industry. To that end, providing research experience to undergraduates has been widely reported as a very effective approach to attract students to industry or graduate education in engineering and other STEM-based majors. This paper presents assessment results of two cohorts of Cybermanufacturing REU at a major university. Students were recruited from across the United States majoring in multiple engineering fields, such as industrial engineering, mechanical engineering, chemical engineering, mechatronics, manufacturing, and computer science. Several of the participants were rising sophomores or juniors who did not have any industry internship or prior research experience. In total 20 students (ten per year) participated in the program and worked on individual project topics under the guidance of faculty and graduate student mentors. Unlike a typical REU program, the Cybermanufacturing REU involved a few unique activities, such as a 48-hour intense design and prototype build experience (also known as Aggies Invent), industry seminars, and industry visits. Overall, the REU students demonstrated significant gains in all of the twelve research-related competencies that were assessed as a part of formative and summative evaluation process. While almost all of them wanted to pursue a career in advanced manufacturing, including Cybermanufacturing, the majority of the participants preferred industry over graduate school. The paper provides an in-depth discussion on the findings of the REU program evaluation and its impact on undergraduate students with respect to their future plans and career choice. The analysis is also done by gender, ethnicity, academic level (sophomore, junior, senior), and type of home institution (e.g., large research universities, rural and small schools) to explore if there was any significant difference in mean research competency scores based on these attributes. 
    more » « less