skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian Optimization and Hierarchical Forecasting of Non-Weather-Related Electric Power Outages
Power outage prediction is important for planning electric power system response, restoration, and maintenance efforts. It is important for utility managers to understand the impact of outages on the local distribution infrastructure in order to develop appropriate maintenance and resilience measures. Power outage prediction models in literature are often limited in scope, typically tailored to model extreme weather related outage events. While these models are sufficient in predicting widespread outages from adverse weather events, they may fail to capture more frequent, non-weather related outages (NWO). In this study, we explore time series models of NWO by incorporating state-of-the-art techniques that leverage the Prophet model in Bayesian optimization and hierarchical forecasting. After defining a robust metric for NWO (non-weather outage count index, NWOCI), time series forecasting models that leverage advanced preprocessing and forecasting techniques in Kats and Prophet, respectively, were built and tested using six years of daily state- and county-level outage data in Massachusetts (MA). We develop a Prophet model with Bayesian True Parzen Estimator optimization (Prophet-TPE) using state-level outage data and a hierarchical Prophet-Bottom-Up model using county-level data. We find that these forecasting models outperform other Bayesian and hierarchical model combinations of Prophet and Seasonal Autoregressive Integrated Moving Average (SARIMA) models in predicting NWOCI at both county and state levels. Our time series trend decomposition reveals a concerning trend in the growth of NWO in MA. We conclude with a discussion of these observations and possible recommendations for mitigating NWO.  more » « less
Award ID(s):
1940176
PAR ID:
10392574
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Energies
Volume:
15
Issue:
6
ISSN:
1996-1073
Page Range / eLocation ID:
1958
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cherifi, H; Donduran, M; Rocha, LM; Cherifi, C; Varol, O (Ed.)
    Long power outages caused by weather can have a big impact on the economy, infrastructure, and quality of life in affected areas. It’s hard to provide early and accurate warnings for these disruptions because severe weather often leads to missing weather recordings, making it difficult to make learning-based predictions. To address this challenge, we have developed HMN-RTS, a hierarchical multiplex network that classifies disruption severity by temporal learning from integrated weather recordings and social media posts. This new framework’s multiplex network layers gather information about power outages, weather, lighting, land cover, transmission lines, and social media comments. Our study shows that this method effectively improves the accuracy of predicting the duration of weather-related outages. The HMN-RTS model improves 3 h ahead outage severity prediction, resulting in a 0.76 macro F1-score vs 0.51 for the best alternative for a five-class problem formulation. The HMN-RTS model provides useful predictions of outage duration 6 h ahead, enabling grid operators to implement outage mitigation strategies promptly. The results highlight the HMN-RTS’s ability to offer early, reliable, and efficient risk assessment. 
    more » « less
  2. Abstract Aggregated community-scale data could be harnessed to provide insights into the disparate impacts of managed power outages, burst pipes, and food inaccessibility during extreme weather events. During the winter storm that brought historically low temperatures, snow, and ice to the entire state of Texas in February 2021, Texas power-generating plant operators resorted to rolling blackouts to prevent collapse of the power grid when power demand overwhelmed supply. To reveal the disparate impact of managed power outages on vulnerable subpopulations in Harris County, Texas, which encompasses the city of Houston, we collected and analyzed community-scale big data using statistical and trend classification analyses. The results highlight the spatial and temporal patterns of impacts on vulnerable subpopulations in Harris County. The findings show a significant disparity in the extent and duration of power outages experienced by low-income and minority groups, suggesting the existence of inequality in the management and implementation of the power outage. Also, the extent of burst pipes and disrupted food access, as a proxy for storm impact, were more severe for low-income and minority groups. Insights provided by the results could form a basis from which infrastructure operators might enhance social equality during managed service disruptions in such events. The results and findings demonstrate the value of community-scale big data sources for rapid impact assessment in the aftermath of extreme weather events. 
    more » « less
  3. Iliadis, L; Maglogiannis, I; Kyriacou, E; Jayne, C (Ed.)
    Weather-related power disruptions present significant challenges to public infrastructure, societal well-being, and the distribution grid. Predicting outage durations in distribution grids is another challenge compared to transmission line outage durations due to distribution networks’ complexity and finer granularity. While forecasting forced power outages is crucial, accurately estimating their duration is essential for timely response and mitigation measures. This study introduces the Spatiotemporal Multiplex Network (SMN-WVF), a methodology designed to predict power outage durations across varying lead times, tackling the difficulties posed by small, high-complexity spaces within distribution grids. SMN-WVF employs multiplex networks that incorporate multi-modal data across both time and space, including layers such as power outages, weather conditions, weather forecasts, vegetation, and distances between substations. We demonstrate the importance of incorporating additional layers of data sources as they are shown to help the model’s predictions through gradual improvement in the macro F1 score performance. 
    more » « less
  4. In recent decades, blackouts have shown an increasing prevalence of power outages due to extreme weather events such as hurricanes. Precisely assessing the spatiotemporal outages in distribution networks, the most vulnerable part of power systems, is critical to enhancing power system resilience. The Sequential Monte Carlo (SMC) simulation method is widely used for spatiotemporal risk analysis of power systems during extreme weather hazards. However, it is found here that the SMC method can lead to large errors as it repeatedly samples the failure probability from the time-invariant fragility functions of system components in time-series analysis, particularly overestimating damages under evolving hazards with high-frequency sampling. To address this issue, a novel hazard resistance-based spatiotemporal risk analysis (HRSRA) method is proposed. This method converts the failure probability of a component into a hazard resistance and uses it as a time-invariant value in time-series analysis. The proposed HRSRA provides an adaptive framework for incorporating high-spatiotemporal-resolution meteorology models into power outage simulations. By leveraging the geographic information system data of the power system and a physics-based hurricane wind field model, the superiority of the proposed method is validated using real-world time-series power outage data from Puerto Rico, including data collected during Hurricane Fiona in 2022. 
    more » « less
  5. This paper describes the implementation of a prediction model for real-time assessment of weather related outages in the electric transmission system. The network data and historical outages are correlated with a variety of weather sources in order to construct the knowledge extraction platform for accurate outage probability prediction. An extension of the logistic regression prediction model that embeds the spatial configuration of the network was used for prediction. The results show that the developed model manifests high accuracy and is able to differentiate an outage area from the rest of the network in 1 to 3 hours before the outage. The prediction model is integrated inside a weather testbed for real-time mapping of network outage probabilities based on incoming weather forecast. 
    more » « less