skip to main content


Title: Non‐native species limit stream restoration benefits for brook trout

Success of stream restoration can be difficult to define because many interacting abiotic and biotic factors across spatio‐temporal scales can have measurable effects. Consequently, failure in habitat restoration to achieve targeted biological goals may reflect interactions of habitat restoration with unaccounted risks that have yet to be addressed on the landscape. This is particularly true within invaded landscapes, where habitat restoration can benefit non‐native competitors as much as the native fishes for which restoration is designed. We tested for interacting effects of a reach scale habitat restoration effort and non‐native trout competition on habitat use by a brook trout (Salvelinus fontinalis) metapopulation within a productive main stem corridor of the Shavers Fork watershed, West Virginia. We used a joint species occupancy model within a BACI sampling design to show that brook trout occupancy of main stem habitat was highest post‐restoration within restored sampling reaches, but this benefit to native brook trout was conditional on brown trout (Salmo trutta) not being present within the main stem habitat. Collectively these results indicate that habitat restoration was only beneficial for native brook trout when non‐native trout were absent from the restored sampling area. Proactive approaches to restoration will be integral for supporting resilient ecosystems in response to future anthropogenic threats (e.g. climate change), and we have shown that such actions will only be successful if non‐native competitors do not also benefit from the restoration actions.

 
more » « less
NSF-PAR ID:
10392601
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
31
Issue:
1
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We used direct observation via snorkeling surveys to quantify microhabitat use by native brook (Salvelinus fontinalis) and non‐native brown (Salmo trutta) and rainbow (Onchorynchus mykiss) trout occupying natural and restored pool habitats within a large, high‐elevation Appalachian river, United States. Permutational multivariate analysis of variance (PERMANOVA) and subsequent two‐way analysis of variance (ANOVA) indicated a significant difference in microhabitat use by brook and non‐native trout within restored pools. We also detected a significant difference in microhabitat use by brook trout occupying pools in allopatry versus those occupying pools in sympatry with non‐native trout—a pattern that appears to be modulated by size. Smaller brook trout often occupied pools in the absence of non‐native species, where they used shallower and faster focal habitats. Larger brook trout occupied pools with, and utilized similar focal habitats (i.e. deeper, slower velocity) as, non‐native trout. Non‐native trout consistently occupied more thermally suitable microhabitats closer to cover as compared to brook trout, including the use of thermal refugia (i.e. ambient–focal temperature >2°C). These results suggest that non‐native trout influence brook trout use of restored habitats by: (1) displacing smaller brook trout from restored pools, and (2) displacing small and large brook trout from optimal microhabitats (cooler, deeper, and lower velocity). Consequently, benefits of habitat restoration in large rivers may only be fully realized by brook trout in the absence of non‐native species. Future research within this and other large river systems should characterize brook trout response to stream restoration following removal of non‐native species.

     
    more » « less
  2. We quantified stream temperature response to in‐stream habitat restoration designed to improve thermal suitability and resiliency of a high‐elevation Appalachian stream known to support a temperature‐limited brook trout population. Our specific objectives were to determine if: (1) construction of deep pools created channel unit‐scale thermal refugia and (2) reach scale stream channel reconfiguration reduced peak water temperatures along a longitudinal continuum known to be highly susceptible to summer‐time warming. Contrary to expectations, constructed pools did not significantly decrease channel unit‐scale summer water temperatures relative to paired control sites. This suggests that constructed pools did not successfully intercept a cool groundwater source. However, we did find a significant effect of stream channel restoration on reach‐scale thermal regimes. Both mean and maximum daily stream temperatures experienced significantly reduced warming trends in restored sections relative to control sections. Furthermore, we found that restoration efforts had the greatest effect on stream temperatures downstream of large tributaries. Restoration appears to have significantly altered thermal regimes within upper Shavers Fork, largely in response to changes in channel morphology that facilitated water movement below major cold‐water inputs. Decreased longitudinal warming will likely increase the thermal resiliency of the Shavers Fork main‐stem, sustaining the ability of these key large river habitats to continue supporting critical metapopulation processes (e.g. supplemental foraging and dispersal among tributary populations) in the face of climate change.

     
    more » « less
  3. Climate change and invasive species are major threats to native biodiversity, but few empirical studies have examined their combined effects at large spatial and temporal scales. Using 21,917 surveys collected over 30 years, we quantified the impacts of climate change on the past and future distributions of five interacting native and invasive trout species throughout the northern Rocky Mountains, USA. We found that the occupancy of native bull trout and cutthroat trout declined by 18 and 6%, respectively (1993–2018), and was predicted to decrease by an additional 39 and 16% by 2080. However, reasons for these occupancy reductions markedly differed among species: Climate-driven increases in water temperature and decreases in summer flow likely caused declines of bull trout, while climate-induced expansion of invasive species largely drove declines of cutthroat trout. Our results demonstrate that climate change can affect ecologically similar, co-occurring native species through distinct pathways, necessitating species-specific management actions. 
    more » « less
  4. Abstract

    Disconnected habitat fragments are poor at supporting population and community persistence; restoration ecologists, therefore, advocate for the establishment of habitat networks across landscapes. Few empirical studies, however, have considered how networks of restored habitat patches affect metacommunity dynamics. Here, using a 10‐year study on restored hedgerows and unrestored field margins within an intensive agricultural landscape, we integrate occupancy modelling with network theory to examine the interaction between local and landscape characteristics, habitat selection and dispersal in shaping pollinator metacommunity dynamics. We show that surrounding hedgerows and remnant habitat patches interact with the local floral diversity, bee diet breadth and bee body size to influence site occupancy, via colonisation and persistence dynamics. Florally diverse sites and generalist, small‐bodied species are most important for maintaining metacommunity connectivity. By providing the first in‐depth assessment of how a network of restored habitat influences long‐term population dynamics, we confirm the conservation benefit of hedgerows for pollinator populations and demonstrate the importance of restoring and maintaining habitat networks within an inhospitable matrix.

     
    more » « less
  5. Abstract

    Large‐seeded, animal‐dispersed (LSAD) trees include some of the most valuable and threatened species in the tropics, but they are chronically underrepresented in regenerating forests. Toucans disperse many LSAD species, so attracting toucans to regenerating forests should help re‐establish more diverse tree communities. We ask: (1) What constitutes suitable toucan habitat in premontane southern Costa Rica? (2) How much do small‐scale restoration strategies influence toucan visitation compared to landscape‐scale habitat suitability outside of restoration sites? (3) How well does toucan visitation predict the richness of LSAD tree species recruiting into regenerating forests? We combined habitat suitability models with long‐term toucan observations and comprehensive tree recruitment surveys to assess these questions in a multi‐site forest restoration experiment. Restoration treatments included tree plantations, natural regeneration, and applied nucleation. Habitat suitability obtained by modeling for three sympatric toucan species was predicted by elevation and the extent and age of landscape forest cover. Within suitable landscapes, toucans visited areas restored via tree planting ≥5 yr sooner and ≥2× more often than plots restored via natural regeneration. Tree plantations in suitable toucan habitat at the landscape scale had LSAD tree recruitment communities that were 2–3× richer in species than plantations in poor toucan habitat, and 71% (15/21) of all recruiting LSAD tree species were found only in plantations where landscape habitat was suitable for the largest toucan,Ramphastos ambiguus. Results support a multi‐spatial‐scale model for predicting toucan‐mediated dispersal of LSAD trees. Tree planting increases toucan visitation and LSAD tree recruitment, but only within landscapes that represent suitable toucan habitat. More broadly, habitat suitability modeling for key seed dispersers can help prioritize restoration actions within heterogenous landscapes.

     
    more » « less